
High-Performance NTT Hardware Accelerator to Support
ML-KEM and ML-DSA

Dur E Shahwar Kundi
PQShield

Oxford, United Kingdom
dur-e-shahwar.kundi@pqshield.com

Jose M. Bermudo Mera
PQShield

Leuven, Belgium
jose.mera@pqshield.com

Pierre-Yves Strub
PQShield

Paris, France
pierre-yves.strub@pqshield.com

Michael Hutter
PQShield

Vienna, Austria
michutte@gmail.com

Abstract
Large polynomial multiplications are crucial for Post-Quantum
Cryptography standards like Module-Lattice-based Key Encapsu-
lation Mechanism (ML-KEM) and Module-Lattice-based Digital
Signature (ML-DSA). These multiplications, being complex, are
often accelerated using the Number Theoretic Transform (NTT).
This work presents a novel architecture of a high-performance
NTT accelerator capable of performing both NTT and inverse NTT
operations using a single set of hardware resources. The design
makes use of a single butterfly configuration unit to reduce resource
requirements and improve critical path. The Multi-path Delay Com-
mutator (MDC) strategy is employed to enable fully pipelined and
parallel processing of multiple coefficients, supporting both ML-
KEM and ML-DSA computations. Practical results show that our
proposed NTT engine requires 3,821 LUTs, 2970 FFs, 20 DSPs, and
5 BRAMs on an AMD Zynq UltraScale+ FPGA, and can run up to
322MHz. Our design provides the best Area-Time Product (ATP)
among current NTT architectures.

CCS Concepts
• Security and privacy → Digital signatures; Public key en-
cryption; • Hardware→ Hardware accelerators.

Keywords
Polynomial Multiplication, NTT, Multi-path Delay Commutator
(MDC),ML-KEM,ML-DSA, CRYSTALS-Kyber, CRYSTALS-Dilithium

ACM Reference Format:
Dur E Shahwar Kundi, JoseM. BermudoMera, Pierre-Yves Strub, andMichael
Hutter. 2024. High-Performance NTT Hardware Accelerator to Support ML-
KEM and ML-DSA. In Proceedings of the 2024 Workshop on Attacks and
Solutions in Hardware Security (ASHES ’24), October 14–18, 2024, Salt Lake
City, UT, USA.. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3689939.3695785

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASHES ’24, October 14–18, 2024, Salt Lake City, UT, USA.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1235-7/24/10
https://doi.org/10.1145/3689939.3695785

1 Introduction
The latest advances in the field of quantum computation have posed
an imminent threat to the currently deployed Public-Key Infras-
tructure, underpinning digital security. The Shor’s quantum al-
gorithm [18] will be able to solve the mathematical complexity
of current Public Key Encryption (PKE) algorithms via quantum
computers including factorization of large integers and solving
discrete logarithms. In response, various government agencies have
acknowledged this threat. National Institute of Standards and Tech-
nology (NIST), in particular, started a standardization process in
2016 to develop a new set of quantum-resistant cryptographic algo-
rithms, known as Post-Quantum Cryptography (PQC) [16].

In 2022, NIST finalized PQC standards for Key-Encapsulation
Mechanism (KEM) andDigital Signature (DSA) schemes [17]. Lattice-
based Cryptography (LBC) has stood out because of its strong
foundation on hard mathematical problems and enhanced per-
formance, leading to Module-Lattice-based KEM (ML-KEM) [7]
standard based on CRYSTALS-Kyber [3] and Module-Lattice-based
DSA (ML-DSA) [8] standard based on CRYSTALS-Dilithium [4].
LBC constructions also support advanced security features like
Identity-based Encryption (IBE) [1], Fully Homomorphic Encryp-
tion (FHE)) [11], and Zero-Knowledge Proofs (ZKP) for the post-
quantum era.

The polynomial multiplication, a key operation in all these LBC
schemes, involves convolution and modular arithmetic, making it
the most computationally intensive task in these cryptosystems.
Hardware acceleration of this operation is crucial for high perfor-
mance, with the Number Theoretic Transform (NTT) being the pre-
ferredmethod due to its quasi-linear complexity ofO(𝑛 log(𝑛)). The
NTT is, in fact, the part of ML-KEM and ML-DSA standards [7, 8],
supporting lattice dimensions of 𝑛 = 256 with moduli-𝑞 of 12-bit
and 23-bit, respectively. Table 1 summarizes the frequency of for-
ward and inverse NTT (iNTT) computations required for each
parameter set in the respective standards. In contrast, FHE and ZKP
require much larger parameters, with 𝑛 ranging from 29 to 217 and
modulus-𝑞 from 28-bit to 64-bit [13].

A high-speed NTT accelerator is essential for optimizing cryp-
tosystem’s performance, as the design choice of it alone will sig-
nificantly impacts overall efficiency. This work introduces a high-
performance, unified NTT/iNTT accelerator that processes two
coefficients in parallel and pipelined fashion via Multi-path Delay
Commutator (MDC) [19] strategy. The accelerator incorporates

https://orcid.org/0000-0001-5120-0887
https://orcid.org/0000-0003-0457-5728
https://orcid.org/0000-0002-8196-7875
https://orcid.org/0000-0001-9769-7649
https://doi.org/10.1145/3689939.3695785
https://doi.org/10.1145/3689939.3695785
https://doi.org/10.1145/3689939.3695785

ASHES ’24, October 14–18, 2024, Salt Lake City, UT, USA. Dur E Shahwar Kundi, Jose M. Bermudo Mera, Pierre-Yves Strub, & Michael Hutter

Table 1: Frequency of NTT/iNTT operations.

Standard Modulus 𝑞 𝑛 NTT iNTT

ML-KEM-512
3329 256

10× 8×
ML-KEM-768 15× 11×
ML-KEM-1024 20× 14×
ML-DSA-44

8380417 256
32× 24×

ML-DSA-65 44× 36×
ML-DSA-87 60× 48×

unique features that minimize hardware resource usage while en-
hancing performance. ML-KEM and ML-DSA parameter sets are
considered to benchmark the area and performance metrics.

The contributions of our work are summarized as follows:
• We present a unified NTT hardware architecture that sup-
ports both ML-KEM and ML-DSA moduli to be used for all
NIST recommended security levels. The architecture makes
use of a single datapath for both forward and inverse NTT
operations without duplicated control logic.

• Our design applies a fully pipelined, 8-stages deep, Multi-
path Delay Commutator (MDC) approach, processing 2 co-
efficients per cycle (radix-2). This allows the core to continu-
ously consume data input without causing data dependencies
in memory accesses and eliminates the need for additional
control effort.

• We propose a novel design that uses a single butterfly con-
figuration in each pipeline stage. By using a Cooley-Tukey
(CT) butterfly-only configuration, our design eliminates the
need to switch configurations when changing the NTT di-
rection (forward or inverse), thereby reducing area overhead.
This approach also shortens the critical path by eliminating
the need for multiplexers, resulting in a higher operating
frequency.

• We present practical implementation results on an AMD
Zynq UltraScale+ FPGA, demonstrating high throughput
along with best Area-Time Product (ATP) compared to re-
lated work as shown in Table 3. Compared to [2], our de-
sign uses nearly the same number of LUTs but increases
throughput by more than fourfold. Therefore, our design is
an excellent choice for applications where LUT resources
are the limiting factor.

The rest of the paper is organized as follows. Section 2 provides
preliminary details about our used notation and NTT in general.
Section 3 provides the analysis of state-of-the-art of NTT archi-
tectures and their limitations. The design of our proposed Radix-2
MDC (R2MDC) NTT/iNTT engine is explained in Section 4 and
implementation results are presented and discussed in Section 5.
Finally, in Section 6, conclusions are drawn.

2 Preliminaries
2.1 Notation
We denote the ring of integers modulo 𝑞 as 𝑍𝑞 . In this paper, we
assume 𝑞 is a prime number, making 𝑍𝑞 a prime field. We denote as
𝑅𝑞 = Z𝑞 [𝑥]/⟨𝑥𝑛 +1⟩ the ring of polynomials reduced by 𝑥𝑛 +1with
coefficients in Z𝑞 . We assume that 𝑛 is a power of two. In such ring,
any element can by uniquely represented by a polynomial over Z𝑞

+
_

a

b

a + b

a - b

+
_

a

b

a + b

(a - b)

(a) (b)

Figure 1: (a) Cooley-Tukey (CT), (b) Gentleman-Sande (GS).

of degree smaller than𝑛. In the algorithms and equations, lowercase
letters (e.g., 𝑎) are used to represent polynomials, while vectors of
polynomials are represented with bold case and matrices with the
upper case. The 𝑖−th coefficient of a polynomial 𝑎 is written 𝑎𝑖 . The
hat tilde is used to represent elements in the NTT domain (e.g., 𝑎).

2.2 Number Theoretic Transform
NTT is a generalisation of classical Discrete Fourier Transform
(DFT) Z𝑞 with 𝑞 a prime satisfying 𝑞 ≡ 1 mod 2𝑛. We fix 𝜔 as a
𝑛-th primitive root of unity (also referred to as twiddle factor) – i.e.
𝜔 is an element of Z𝑞 s.t. 𝜔𝑛 = 1 and 𝜔𝑖 ≠ 1 for any integer 𝑖 in
[1, 𝑛−1]. We also fix 𝜙 as a 2𝑛-th primitive-root of unity s.t. 𝜙2 = 𝜔 .

The (Negative-Wrapped) NTT is defined as the function from
R𝑞 to R𝑞 that maps a polynomial 𝑎 to 𝑎 where, for 𝑖 ∈ [0, 𝑛 − 1]:

𝑎𝑖 =
∑︁
𝑗<𝑛

𝑎 𝑗𝜙
𝑗𝜔𝑖 𝑗 (1)

=
∑︁
𝑗<𝑛

𝑎 𝑗𝜙
2𝑖 𝑗+𝑗 (2)

The inverse NTT (written iNTT) transforms an NTT-output back
into its original representation:

𝑎𝑖 = 𝑛−1
𝑛−1∑︁
𝑗=0

𝑎 𝑗𝜙
− 𝑗𝜔−𝑖 𝑗 (3)

= 𝑛−1
𝑛−1∑︁
𝑗=0

𝑎 𝑗𝜙
−(2𝑖 𝑗+𝑗) (4)

The NTT as the following remarkable property: for any element
𝑎, 𝑏 ∈ R𝑞 , we have that 𝑎𝑏 = 𝑎 ◦ 𝑏, where 𝑎 ◦ 𝑏 stands for the
polynomial coefficient-wise multiplication. This leads to a direct
algorithm for polynomial multiplication whose complexity reduces
to the ones of the NTT/iNTT (the convolution having intrinsically
a linear complexity).

It is well known that DFT optimization techniques are applicable
when implementing the NTT. Among them, the Fast-Fourier Trans-
form (FFT), a divide-and-conquer algorithm proposed indepen-
dently by Cooley-Tukey [6] and Gentleman-Sande [10], achieves a
O(𝑛 log(𝑛)) complexity. The radix-2 decimation-in-time (DIT) with
bit-reversal is one of the most common variant of the FFT. It takes
a polynomial in normal order (𝑎0, 𝑎1, . . . , 𝑎𝑛−1) and generates an
output polynomial in bit-reverse order (𝑎br(0) , 𝑎br(1) , . . . , 𝑎br(𝑛−1)).
It generally relies on the Cooley-Tukey (CT) butterfly for the for-
ward NTT, and on the Gentleman-Sande (GS) butterfly unit for
the inverse iNTT. The difference in CT and GS butterflies is the
order of the operations, the CT butterfly relying on a multiplication
preceded an addition/subtraction while the GS butterfly relies on

High-Performance NTT Hardware Accelerator to Support ML-KEM and ML-DSA ASHES ’24, October 14–18, 2024, Salt Lake City, UT, USA.

NTT

ntt_in_data

ntt_in_valid

Twiddle ROMCtrl

ctrl_mode

R2MDCST1

BF2

ST2

64D

64DSW
64

NTT
input

BF2
0

1

0

1

0

1

iNTT output

BF2

ST8

1D

1DSW
1

0

1

0

1

ST3
ST7

0

1

Post-process
iNTT inputST3

NTT
output

ntt_out_data

ntt_in_ready

ST7

Zeta
C_code

Pkg
SV_file

bypass

ntt_out_ready
ntt_out_valid

Figure 2: Our Proposed R2MDC NTT/iNTT engine.

an addition/subtraction preceded by a multiplication as shown in
Figure 1.

Note that the multiplication by powers of 𝜙 (resp. inverse power
of 𝜙) in the NTT (Eq. (1)) (resp. in the iNTT (Eq. (3))) can be seen
as pre-processing and post-processing steps over the polynomials
before the NTT/iNTT computation is actually done. However, it is
possible to combine these within the NTT/iNTT computations by
integrating them in the CT/GS butterflies (Eqs. (2) and (4)).

3 Analysis of NTT variants
Since NTT is one of the crucial blocks in LBC, its implementa-
tion requires careful design considerations by keeping in mind the
performance, independent and continuous execution, and resource
requirements. A common strategy to implement NTT is an 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒
approach that can be done either using a single butterfly unit [9, 22]
or multiple butterfly units [2, 5, 12, 14, 21, 23] that perform NTT
computations stage by stage. The ML-KEM and ML-DSA require 7
and 8 stages of NTT computations based on 𝑛 and the modulus 𝑞,
respectively. The disadvantage of this approach is that separate read
and write memories are always needed to store computations for
each stage along with complex control logic to manage read/write
memory accesses/conflicts. Furthermore, the latency is higher as
such a core will wait to finish the NTT computations per stage per
vector (if multiple vectors need to be processed) and can not be
parallelized with other operations in the ML-KEM and ML-DSA
system.

In contrast to the previously mentioned approach, a 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝑑
NTT implementation offers significant advantages by delivering
high performance while avoiding complex memory accesses. The
Multi-path Delay Commutator (MDC) [19] is a classical approach
for processing NTT computations in a pipelined manner, with
the level of parallelism determined by the choice of radix. Radix-
2 (R2) enables processing 2 coefficients per clock cycle whereas
Radix-4 (R4) enables processing of 4 coefficients per clock cycle.
Prior work on high-performance MDC based NTT designs have
one or more limitations [15, 24]. First, they are either targeted
for ML-KEM or ML-DSA, but not for both standards. Note that
the NTT engine being proposed for ML-KEM [15] is unable to
support ML-DSA because of its in-complete NTT that supports
one less necessary pipeline stage. Second, the R2MDC NTT design
described in [15] employs two sets of hardware units dedicated

to NTT and iNTT operations. It processes even and odd data sets
separately rather than utilizing continuous data processing. On
the other hand, the NTT design in [24] has a partially pipelined
architecture with two stages folded together as well as processes
a single coefficient per cycle instead of two. Hence, both available
designs come with data-memory dependencies to store and load the
intermediate computations during the NTT/iNTT flow and have a
higher latency requirement in terms of clock cycles.

All of the state-of-the-art NTT architectures [2, 15, 22, 24] utilize
a CT butterfly configuration for the NTT while a GS butterfly con-
figuration is used for the iNTT flow. The NTT hardware designs
therefore implement a 𝑢𝑛𝑖 𝑓 𝑖𝑒𝑑 butterfly unit that supports both
configurations in a single hardware module but with the overhead
of duplicated hardware. In particular, the butterfly units utilize
two sets of modular adders and modular subtractors along with
a shared modular multiplier. It also comprises of multiplexer cir-
cuitry for selection between the NTT and iNTT datapath flow. This
architectures therefore result in an unnecessarily increased area
requirement and critical path.

4 Architecture of our NTT/iNTT engine
To cater above limitations, this work proposes a high-performance
fully pipelined and parallel R2MDC NTT/iNTT accelerator with
the following features: (i) Single-set of NTT/iNTT hardware with
unique control logic, (ii) single butterfly configuration, i.e., CT for
NTT/iNTT that reduced area and improved the critical path, (iii)
fully pipelined and parallel architecture to enable continuous con-
sumption of input by NTT engine whereas consumption of output
by proceeding construction, without any data memory dependency,
and (iv) support both ML-KEM and ML-DSA NTT/iNTT computa-
tions, or even either of it.

4.1 Top-Level Design and Interface
The block diagram of our proposed R2MDC NTT/iNTT acceler-
ator is shown in Figure 2. The accelerator takes inputs via the
ntt_in_data bus. The data width was chosen to be 46 bits compris-
ing of 2 coefficients (2×23 bits) of ML-DSA. ML-KEM uses only the
least significant 12 bits of each reserved 23-bit field, the remaining
most significant bits are padded with ‘0’. The output is driven at
the ntt_out_data bus. For both busses, we implemented a signal

ASHES ’24, October 14–18, 2024, Salt Lake City, UT, USA. Dur E Shahwar Kundi, Jose M. Bermudo Mera, Pierre-Yves Strub, & Michael Hutter

BF2

bf_out2

M
od
ul
ar

Ad
de
r

bf_in1

bf_in_tw

bf_in2

ctrl_alg

M
od
ul
ar

Su
bt
ra
ct
or

bf_out1

DSP

M
od
ul
ar

R
ed
uc
tio
n

Figure 3: Radix-2 Cooley-Tukey-only Butterfly (BF2) Unit.

synchronization hand-shake via valid/ready inputs and outputs, re-
spectively. The ctrl_mode input allows switching between Dilithium
and Kyber and the type of operation, i.e., NTT or iNTT.

The engine is composed of two primary components: the R2MDC
engine and the twiddle ROM unit. Based on 𝑛 = 256, the MDC
architecture results in 8 stages of the NTT, which equals to 𝑙𝑜𝑔2 (𝑛).
Except for the first stage (ST1) that only consists of a single butterfly
unit (BF2), all other stages are comprised of the same BF2 unit and
a commutator unit. The commutator unit is made up of a Switch
(SW) and one or more Delay (D) buffers that synchronize the arrival
of data towards the BF2 of the same stage in a required sequence.
Based on the NTT flow, the delay buffer has a variable depth starting
from 64D for ST1, 32D for ST2,... , to 1D for ST8. Whereas the iNTT
flow requires the delay buffers in a sequence of 1D for ST1, 2D for
ST2,... , to 64D for ST8. Contrary to [15], we utilize the same NTT
flow commutator units for the iNTT by devising a control logic
through multiplexers. The logic ‘0’ via 𝑐𝑡𝑟𝑙_𝑚𝑜𝑑𝑒 signal selects
an NTT operation where the data starts flowing from ST1 to ST8,
whereas a logic ‘1’ selects the reverse flow starting from ST8 to ST1
to perform an iNTT operation, thereby fully utilizing the hardware
by 100 %.

4.2 Design of the NTT Stages
Each of the eight stages of our R2MDC engine requires a separate
and identical butterfly unit (BF2). Instead of using a 𝑢𝑛𝑖 𝑓 𝑖𝑒𝑑 butter-
fly unit [2, 15, 24], a single BF2 configuration, i.e., Cooley-Tukey
(CT) as shown in Figure 3 is utilized. This single BF2 unit is then
used for both NTT and iNTT operations. The 𝑏𝑓 _𝑖𝑛1 and 𝑏𝑓 _𝑖𝑛2
inputs expect the two 23-bit coefficients, and 𝑏𝑓 _𝑜𝑢𝑡1 and 𝑏𝑓 _𝑜𝑢𝑡2
drive the two output coefficients accordingly. The 𝑐𝑡𝑟𝑙_𝑎𝑙𝑔 signal se-
lects the appropriate modulus 𝑞 and type of modular reduction used
after the multiplication operation. Modulo reduction after addition
and subtraction was implemented by either adding or subtracting
the modulus 𝑞, but without opening a timing side channel, i.e., the
BF2 unit runs in constant time. The 𝑏𝑓 _𝑖𝑛_𝑡𝑤 input provides the
twiddle factors from the twiddle ROM. Note that we added input
and output registers and also pipelined the modulo reduction unit
in order to reduce critical path of our design. The total latency of
the BF2 unit is 5 clock cycles.

Due to the single CT BF2 configuration, the pre-process step dur-
ing the NTT can be merged with the butterfly computations. How-
ever, the post-process step during the iNTT cannot be merged and
is implemented separately along with the multiplication by 𝑛−1. It
costs one extra multiplier and a ROM to store the pre-computed val-
ues for ML-KEM and ML-DSA. Hence, NTT𝐶𝑇,𝜁

𝑛𝑜→𝑏𝑜
and iNTT𝐶𝑇,𝜔

−1

𝑏𝑜→𝑛𝑜

0

1

ML-KEM
Reduction

Part-1

ML-DSA
Reduction

Part-1

ML-KEM
Reduction

Part-2

ML-DSA
Reduction

Part-2

0

1

Unified Modular Reduction

33 bits

46 bits

23 bits

Figure 4: Unified Modular Reduction Unit.

configurations are taken up for forward and reverse computations,
respectively that also avoids the bit-reversal requirements. Nor-
mally, 𝜁 notation is used for merged pre/post-process steps.

The proposed R2MDC NTT accelerator is implemented in a fully
pipelined manner, with all 8 stages unfolded and capable of pro-
cessing 2 coefficients per cycle in parallel. To synchronize the NTT
accelerator with the rest of the system, a signal handshake protocol
was implemented that consists of ∗_𝑣𝑎𝑙𝑖𝑑 and ∗_𝑟𝑒𝑎𝑑𝑦 signals as
shown in Figure 2. For example, the 𝑖𝑛_𝑣𝑎𝑙𝑖𝑑 signal indicate that
valid data is driven at the 𝑖𝑛_𝑑𝑎𝑡𝑎 bus. The 𝑖𝑛_𝑟𝑒𝑎𝑑𝑦 signal indicates
that the core is ready to consume new data. Data transaction only
happens if both ∗_𝑣𝑎𝑙𝑖𝑑 and ∗_𝑟𝑒𝑎𝑑𝑦 signals are asserted. In this
case, the engine consumes the input, processes it, and increments
the pipeline by one cycle. Note that the engine will stall the pipeline
if an output does not get consumed or if no valid input is driven at
the input interface. Thus, our NTT engine is able to process the data
continuously which increases the overall throughput of ML-KEM
and ML-DSA.

Based on the parameter sets given in Table 1, ML-KEM results
in an incomplete-NTT configuration. This basically would produce
a valid output after stage ST7 but the output would not be in a
correct order, requiring 1D shifting and switching. In order to avoid
the incorrect order, we decided to pass the output of ST7 through
stage ST8, utilizing the internal Commutator unit and bypassing the
BF2 unit as shown in Figure 2. This rearranges the output into the
correct sequence for continuous data processing. Similarly, during
the iNTT, the first stage ST8 BF2 is bypassed accordingly. With this
change, it is not necessary that the input vectors need to be split
into even or odd coefficients (e.g., as reported in [15] in case of ML-
KEM). In addition, it is not required to have multiple read and write
operations to load/store the data from/to memory, which further
increases the performance and throughput of our NTT engine.

4.3 Unified Modular Reduction Unit
The modular reduction unit reduces the coefficients from the range
[0, (𝑞−1)2] to which they belong after a multiplication to the range
[0, 𝑞 − 1] in congruence with the parameters of the scheme. For
both ML-KEM and ML-DSA modular reduction units, we decided
to split up the datapath into two in order to reduce the critical path.
The reduction operations therefore take 2 clock cycles and are fully
pipelined. Figure 4 shows the unified architecture.

The ML-KEM modular reduction is a modified version of the
algorithm presented by Xing and Li [21] which in turn is a modifi-
cation of the Barrett reduction. In the first clock cycle, the quotient
is approximated by substituting multiplication and shift with shifts
and additions. In the second clock cycle, the result is computed

High-Performance NTT Hardware Accelerator to Support ML-KEM and ML-DSA ASHES ’24, October 14–18, 2024, Salt Lake City, UT, USA.

following the principle of Barrett reduction. In contrast to Xing
and Li [21], we compute the quotient with one extra bit of preci-
sion, which ensures that the intermediate results lie in the range
[−2𝑞𝑘 , 2𝑞𝑘) and allows us to simplify the output logic down to just
one conditional addition and one conditional subtraction to finally
correct the result.

The ML-DSA modular reduction is based on the notion that the
prime modulus is of a special form, i.e., 𝑞𝑑 = 223 − 213 + 1 (pseudo-
Mersenne prime) and for any 𝑥 , 𝑥 · 223 ≡ 𝑥 (213 − 1) (mod 𝑞𝑑).
We therefore decided to apply the idea of Solinas [20] to efficiently
reduce the coefficients by simple shift and addition/subtraction
operations. The first part of the modular reduction reduces the
original value from 46 bits to 33 bits. The second part reduces the
result further from 33 bits to 23 bits. A final conditional subtraction
corrects the result and brings the coefficients back to the range
[0, 𝑞 − 1].

4.4 Twiddle ROM
Each BF2 unit requires computation with a pre-calculated twiddle
factor, stored in a memory (e.g., ROM or BRAM). That means that
in total 8 memories are needed as each BF2 unit accesses twiddle
factors during each cycle of an NTT or iNTT operation in ML-KEM
and ML-DSA. We decided to implement a dedicated Twiddle ROM
unit which manages the access to these 8 distinct memories as
shown in Figure 2. The pre-computed values are generated using a
C model and are stored in a SystemVerilog 𝑝𝑎𝑐𝑘𝑎𝑔𝑒.𝑠𝑣 file. For an
FPGA target, for example, the BRAMs get initialized directly using
that file. This allows for an easy and flexible replacement with new
or updated twiddle factor values if needed.

5 Implementation Results
The proposed NTT accelerator was implemented in SystemVer-
ilog. We used Synopsys Spyglass linting for efficient verification
and optimization of our design. To evaluate the performance, we
synthesized the design on a Zynq UltraScale+ MPSoC device, i.e.,
‘xck26-sfvc784-2LV-c’. We decided to not allow the compiler to
flatten the hierarchy in order to get exact area requirements of all
implemented submodules. For maximum frequency analysis, we
swept across various target frequencies starting at 50MHz and in-
creased the frequency until occurrence of the first timing violation
after implementation, i.e., Place and Route (PnR).

Table 2 shows the area and performance figures. At a maximum
frequency of 322MHz, our R2MDC NTT/iNTT core capable of
processing ML-DSA and ML-KEM utilizes 3,821 LUTs, 2,970 FFs,
and 16 DSPs. The twiddle ROM consumes 4 36Kb dual-port BRAMs
(or 8 18Kb single-port BRAMs) for storing the pre-computed twiddle
factors. The post-process unit consumes 4 DSPs and 1 BRAMwhich
is needed to store the values of 𝜙−𝑖𝑛−1, 𝑖 ∈ [0, 𝑛 − 1]. In total, 20
DSPs and 5 BRAMs are needed.

Processing a 256-coefficient polynomial vector with our NTT
accelerator takes a total of 258 clock cycles: a 130 clock-cycle latency
to fill the pipeline and 128 cycles to generate the entire output. Note
that once the pipeline is full, processing subsequent vectors takes
only 128 (𝑛/2) clock cycles each.

Table 2: Area and performance results.

Modules Area Latency Frequency
LUTs/FFs/DSPs/BRAMs [Cycles] [MHz]

NTT engine 3,821/2,970/16/–
258 322Twiddle ROM –/–/–/4

Post-process –/–/4/1

5.1 Comparison With Related Work
We now compare our NTT design with related work in Table 3. We
list works that offer Kyber-only [23], Dilithium-only [24], or unified
NTT computations [2, 14]. We differentiate between iterative [2,
14, 23] and pipelined [24] NTT architectures. For each proposed
solution, we indicate the number of internal BF2 butterfly units to
ensure a fair comparison. The table also lists the number of cycles
required to process one polynomial vector as well as up to 8 vectors
(the maximum number for ML-DSA) to highlight the advantage
of pipelined architectures. The ‘Performance’ column converts the
latency for processing 8 vectors into microseconds (𝜇s) and provides
the design’s throughput in Mbps. Additionally, we compute the
Area-Time-Product (ATP) for each design, considering the LUT
count as the most limiting resource on an FPGA and multiplying it
by the latency to process 8 polynomial vectors.

The results indicate that our proposed pipelined NTT accelerator
not only delivers superior performance—processing 8 vectors in
3.60 𝜇s with a throughput of 569 Mpbs—but also has the lowest ATP,
the same applies to ML-KEM. All the listed designs, both iterative
and pipelined, require either FIFOs [15] or additional data memories
to manage input/output coefficients in a correct sequence [2, 14, 23,
24]. It is important to note that these memory requirements have
not been included in the reported figures (as marked with footnote
𝑏).

Compared to our flexible NTT accelerator, most available NTT
architectures are designed for fixed parameter sets [23, 24]. Only
a few, such as those in [2, 14], can handle both ML-KEM and ML-
DSA by integrating two ML-KEM butterfly operations into the
single butterfly unit required for ML-DSA. Aikata et al. [2] utilized
2 BF2 units for ML-DSA, while Mandal and Roy [14] offer two
versions: one with 2 BF2 units and another with 4 BF2 units. In
comparison, our design achieves better ATP values while using
hardware resources comparable to their iterative NTT architectures.

There are few pipelined NTT architectures available in the open
literature [15, 24]. The architecture proposed in [24] designed a
folded R2MDC NTT for ML-DSA, utilizing half the hardware re-
sources of our design but resulting in higher latency. Their design
processed 8 vectors in 13.61 𝜇s, whereas our NTT accelerator pro-
cesses them in 3.6 𝜇s, providing a 74% improvement in performance.
Additionally, our fully pipelined architecture, which requires more
FFs, achieves a higher operating frequency. Despite the different
platforms used (Artix-7 vs. Zynq Ultrascale+), our design reaches a
maximum frequency of 322 MHz compared to the 97 MHz reported
in [24].

The closely related R2MDC NTT design, S-NTT [15] specifically
targets ML-KEM and exhibits the same latency for processing 8
vectors. However, the specific hardware resource usage for NTT
is not separately provided, and thus is not listed in Table 3. Their
design incorporates seven stages based on ML-KEM, with the ST2

ASHES ’24, October 14–18, 2024, Salt Lake City, UT, USA. Dur E Shahwar Kundi, Jose M. Bermudo Mera, Pierre-Yves Strub, & Michael Hutter

Table 3: Performance comparison of iterative and pipelined (MDC-based) NTT methods.

Design FPGA Algos BF2 Area Freq. Latency (CC) Performance Area-Time
units LUTs/FFs/DSPs/BRAMs MHz 1-vec 8-vec 𝜇 s Mbps Prod. [ATP]

[23]𝑎 Artix-7 ML-KEM 4 2,543/792/4/4.5 182 232 1,856 10.20 201 25,938
[24]𝑏 Artix-7 ML-DSA 4 1,919/1,301/8/2 97 424 1,320 13.61 150 26,136

[2]𝑎,𝑏 Zynq ML-DSA 2 3,487/1,918/4/1 270 512 4,096 15.17 135 52,898
UltraScale+ ML-KEM 4 224 1,792 6.64 309 23,154

[14]𝑎
ML-DSA 2 2,893/2,356/4/4.5 342 512 4,096 11.98 171 34,658

Zynq ML-KEM 4 224 1,792 5.24 391 15,159
UltraScale+ ML-DSA 4 5,909/3,376/8/5.5 294 256 2048 6.97 294 41,185

ML-KEM 8 112 896 3.05 672 18,022
Our Zynq ML-DSA 8 3,821/2,970/20/5 322 258 1,158 3.60 569 13,755
Work UltraScale+ ML-KEM 8 254 1,154 3.58 571 13,679
𝑎 Iterative NTT.
𝑏Extra data RAM memory (BRAM) is needed to store intermediate coefficients, which is not included in this table.

commutator starting with a 32D delay instead of 64D, processing a
256-coefficient vector as two 128-coefficient vectors. This makes the
design inflexible for other parameters. While flexibility often entails
increased hardware resources or performance degradation, our
proposed R2MDC NTT accelerator strikes a balance by optimizing
both hardware utilization and performance.

6 Conclusion
In this work, we present a high-performance NTT architecture
to support ML-DSA and ML-KEM. As a novel contribution, we
propose to use a Cooley-Tukey-only butterfly configuration in the
NTT design to reduce area requirements and critical path. We
integrate the new construction in a parallel NTT architecture based
on a Multi-path Delay Commutator (MDC) pipeline to obtain best
results. We evaluated our design on a Zynq Ultrascale+ MPSoC
device. Our results show that it outperforms existing work in terms
of data throughput and Area-Time-Product (ATP) while requiring
less resources compared to similar proposals. Our results also show
that our MDC-based NTT design has similar LUT requirements
than work based on iterative NTTs, but is significantly faster, i.e., up
to a factor of 4 in case of Dilithium NTT calculation performance,
due to the pipelined processing of data. Our solution is therefore
best suitable for high-performance applications of PQC.

References
[1] Shweta Agrawal, Dan Boneh, and Xavier Boyen. 2010. Efficient Lattice (H)IBE in

the Standard Model. In Advances in Cryptology – EUROCRYPT 2010, Henri Gilbert
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 553–572.

[2] Aikata Aikata, Ahmet Can Mert, Malik Imran, Samuel Pagliarini, and Sujoy Sinha
Roy. 2022. KaLi: A Crystal for Post-Quantum Security using Kyber and Dilithium.
Cryptology ePrint Archive, Paper 2022/1086.

[3] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
2021. CRYSTALS-Kyber algorithm specifications and supporting documentation.

[4] Shi Bai, Lèo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlè. 2021. CRYSTALS-Dilithium algo-
rithm specifications and supporting documentation (Version 3.1).

[5] Mojtaba Bisheh-Niasar, Reza Azarderakhsh, andMehranMozaffari-Kermani. 2021.
High-Speed NTT-based Polynomial Multiplication Accelerator for CRYSTALS-
Kyber Post-Quantum Cryptography. Cryptology ePrint Archive, Paper 2021/563.

[6] James Cooley and John Tukey. 1965. An Algorithm for the Machine Calculation
of Complex Fourier Series. Math. Comp. 19, 90 (1965), 297–301.

[7] FIPS-203 (Draft). 2023. Module-Lattice-based Key-Encapsulation Mechanism
Standard. National Institute of Standards and Technology (NIST).

[8] FIPS-204 (Draft). 2023. Module-Lattice-based Digital Signature Standard. National
Institute of Standards and Technology (NIST).

[9] Tim Fritzmann and Johanna Sepúlveda. 2019. Efficient and Flexible Low-Power
NTT for Lattice-Based Cryptography. In 2019 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST). IEEE, McLean, VA, USA, 141–150.

[10] W. Morven Gentleman and G. Sande. 1966. Fast Fourier Transforms: for fun
and profit. In Proceedings of the November 7-10, 1966, Fall Joint Computer Con-
ference (San Francisco, California) (AFIPS ’66 (Fall)). Association for Computing
Machinery, New York, NY, USA, 563–578.

[11] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In Pro-
ceedings of the 41st ACM Symposium on Theory of Computing (Bethesda, MD,
USA). Association for Computing Machinery, New York, NY, USA, 169–178.

[12] Naina Gupta, Arpan Jati, Anupam Chattopadhyay, and Gautam Jha. 2022. Light-
weight Hardware Accelerator for Post-Quantum Digital Signature CRYSTALS-
Dilithium. Cryptology ePrint Archive, Paper 2022/496.

[13] Florian Hirner, Ahmet Can Mert, and Sujoy Sinha Roy. 2024. Proteus: A Pipelined
NTT Architecture Generator. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems Early Access, 1 (2024), 1–11.

[14] Suraj Mandal and Debapriya Basu Roy. 2024. KiD: AHardware Design Framework
Targeting Unified NTT Multiplication for CRYSTALS-Kyber and CRYSTALS-
Dilithium on FPGA. In 37th International Conference on VLSI Design, VLSID 2024,
January 6-10, 2024. IEEE, Kolkata, India, 455–460.

[15] Ziying Ni, Ayesha Khalid, Dur e Shahwar Kundi, Maire ONeill, and Weiqiang
Liu. 2023. HPKA: A High-Performance CRYSTALS-Kyber Accelerator Exploring
Efficient Pipelining. IEEE Trans. Comput. 72, 12 (dec 2023), 3340–3353.

[16] NIST. 2016. Announcing Request for Nominations for Public-Key Post-Quantum
Cryptographic Algorithms. https://csrc.nist.gov/news/2016/public-key-post-
quantum-cryptographic-algorithms

[17] NIST. 2022. NIST IR 8413-upd1: Status Report on the Third Round of the NIST
Post-Quantum Cryptography Standardization Process. https://csrc.nist.gov/
publications/detail/nistir/8413/final

[18] Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 26, 5 (Oct. 1997),
1484–1509. http://dx.doi.org/10.1137/S0097539795293172

[19] Shousheng He and M. Torkelson. 1998. Designing pipeline FFT processor for
OFDM (de)modulation. In Proc. URSI International Symposium on Signals, Systems,
and Electronics. IEEE, Pisa, Italy, 257–262.

[20] Jerome A. Solinas. 1999. Generalized Mersenne Numbers. Technical report,
University of Waterloo, 1999. https://cacr.uwaterloo.ca/techreports/1999/corr99-
39.pdf

[21] Yufei Xing and Shuguo Li. 2021. A Compact Hardware Implementation of
CCA-Secure Key Exchange Mechanism CRYSTALS-KYBER on FPGA. IACR
Transactions on Cryptographic Hardware and Embedded Systems 2021, 2 (Feb.
2021), 328–356.

[22] Ali YahyaHummdi, Amer Aljaedi, Zaid Bassfar, Sajjad Shaukat Jamal, Mohammad
Mazyad Hazzazi, and Mujeeb Ur Rehman. 2024. Unif-NTT: A Unified Hardware
Design of Forward and Inverse NTT for PQC Algorithms. IEEE Access 12 (2024),
94793–94804. https://doi.org/10.1109/ACCESS.2024.3425813

[23] Ferhat Yaman, Ahmet Can Mert, Erdinç Öztürk, and Erkay Savaş. 2021. A
Hardware Accelerator for Polynomial Multiplication Operation of CRYSTALS-
KYBER PQC Scheme. In 2021 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, Grenoble, France, 1020–1025.

[24] Cankun Zhao, Neng Zhang, Hanning Wang, Bohan Yang, Wenping Zhu, Zheng-
dong Li, Min Zhu, Shouyi Yin, Shaojun Wei, and Leibo Liu. 2021. A Compact
and High-Performance Hardware Architecture for CRYSTALS-Dilithium. IACR
TCHES 2022, 1 (Nov. 2021), 270–295.

https://csrc.nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms
https://csrc.nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms
https://csrc.nist.gov/publications/detail/nistir/8413/final
https://csrc.nist.gov/publications/detail/nistir/8413/final
http://dx.doi.org/10.1137/S0097539795293172
https://cacr.uwaterloo.ca/techreports/1999/corr99-39.pdf
https://cacr.uwaterloo.ca/techreports/1999/corr99-39.pdf
https://doi.org/10.1109/ACCESS.2024.3425813

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Number Theoretic Transform

	3 Analysis of NTT variants
	4 Architecture of our NTT/iNTT engine
	4.1 Top-Level Design and Interface
	4.2 Design of the NTT Stages
	4.3 Unified Modular Reduction Unit
	4.4 Twiddle ROM

	5 Implementation Results
	5.1 Comparison With Related Work

	6 Conclusion
	References

