
Side-channel analysis:
why it matters?
Side-channel attacks are a physical type of threat that aims to recover sensitive data manipulated by your code without
using cryptanalysis, or taking advantage of software vulnerabilities.

In practice, algorithms are implemented and run on real-world devices (your laptop, your server, your smartcard, your
phone…). In other words, code needs a hardware reality in order to function. Naturally, physical devices have physical
properties. For example, your processor will take an amount of time to process data, will consume more or less power,
emit electromagnetic waves, produce heat, or even sound as it operates.

All these physical effects are the direct result of the operations being performed, and on the underlying operands the
device may be manipulating. It is possible to passively observe these physical phenomena, and use them to deduce
the data being processed. This kind of attack is referred to as a side-channel attack, or side-channel analysis (SCA).

Researchers and practitioners have repeatedly demonstrated the practical threat of SCA - compromising cryptography
libraries, FIDO devices, cryptocurrency wallets, smart cards, TPMs, IoT devices, and smart vehicles.

Timing analysis

bool check_pwd(str secret, str input){
 for (int i=0; i < secret.len(); i++){
 if (input[i] != secret[i]){
 return false;
 }
 }
 return true;
}

This function compares a user input with a secret
password. It does so character by character, and makes
use of an early stopping mechanism whenever it
encounters a mismatch. However, the problem with
this early stopping is that it introduces a side-channel
weakness: the function execution time depends on the
secret. Indeed, the number of executed loops is directly
related to the number of leading characters that are
correct in the user input. The number of executed
loops has a direct influence on the running time of the
function.

Instead of having to search for the whole space of possible passwords, a smart adversary could submit different
inputs while varying the first letter, and measure the execution time. The submission producing the longest running
time will correspond to the instance where the input contains the correct first letter of the password. The function can
then be called again, this time varying the second letter, and so on until full recovery of the password has been achieved.

The property that this function did not verify is called constant-time. Non-constant time functions and mechanisms
allow for timing attacks, and have been the root cause of many security issues in recent years. For example, Spectre,
Meltdown, Lucky13, or TPM-fail attacks: all of them exploited constant timing issues.

S E C R E T S E C R E T S E C R E T

G U E S S 0 S U S P E C S E C U R E

1 LOOP 2 LOOPS 4 LOOPS

Ready to learn more?
Get in touch: contact@pqshield.com | www.pqshield.com Products Publications Careers

Power analysis
With physical access to the device running code, an attacker
can use cheap tools to measure power consumption
or electromagnetic emanations, and get a very clear
visualisation of the running algorithm.

Let’s consider a device running an ECDSA signature. The
figure below shows a typical reading of power consumption,
as viewed through an oscilloscope.

At first glance, we only see peaks and troughs, and the detail
of what’s occurring could be unclear. But let’s zoom in to a
small section, and try to make sense of the apparent chaos.

At PQShield, we constantly push boundaries to make sure
that all our products execute in constant time, and are
automatically tested using the TVLA methodology. We also
use extensive fuzzing, mount bespoke SCA key recovery
attacks, and test for fault injection resistance. This allows
us to offer our products at the best security protection level
- Cloud, Edge, Government - for any application.

In this view, the trace is marginally noisy, but we can now clearly
distinguish two types of pattern: the small, narrow signals,
and the taller, wide peaks in consumption. These two patterns
correspond to a different operation being performed. In the
case of an operation on an elliptic curve, we can simply infer
that one of these patterns corresponds to a point-doubling,
and the other one to a point-addition. This knowledge allows
for a direct recovery of the secret data being manipulated: the
small part of the curve above shows a sequence “wide-narrow-
wide-narrow-wide-narrow-narrow-wide” which can easily
translate as the bit sequence “1-0-1-0-1-0-0-1”.

As we just saw, simple power analysis can be a very powerful
tool to distinguish between operations. In some cases, such
as the example of ECDSA, this can lead to a trivial recovery of
the secret. In some other cases, this may serve as an effective
means of reverse-engineering.

However, we can also go one step further and distinguish
between the values themselves. The following figure
illustrates how different values actually have different power
consumption leakages whenever manipulated by a smart
card, as was originally observed by Kocher et al. in 1999.

State of the art techniques can exploit this relationship
between leakage and manipulated data. Simple observations
in early discoveries led to statistical correlations, and in recent
years the use of AI and machine learning could be used more
effectively to determine these values.

State of the art techniques can also exploit this relationship
between leakage and manipulated data. For example, simple
observations in early discoveries led to statistical correlations,
and in recent years the use of AI and machine learning.

Leakage detection
To obtain a certain level of security against these attacks, it is
important to ensure that observed leakage does not relate to
manipulated sensitive values. This can be achieved by several
methods (masking, hiding), all of which have been well studied.

It is extremely important to verify this independence in
practice. To this end, PQShield uses a methodology defined in
ISO17825 and dubbed TVLA (Test Vector Leakage Assessment).
In short, this approach comprises the collection of a large
number of traces under different values, and the computation
of Welch’s t-test on this data. TVLA detects statistical
dependencies between observations and underlying data
with a strong confidence.

The following figures illustrate the TVLA results of two ML-KEM
(Kyber) implementations. The first one is unprotected and
clearly shows peaks indicating dependencies at several time
indices which might be exploited by attackers. The second
example uses countermeasures that prevent observing
these dependencies.

