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Executive Summary
This white paper discusses the security of secure messaging protocols in a post‐quantum
world. While this is a technical document, we also hope to provide more general audiences
with an understanding of the stakes, challenges, and techniques of (post‐quantum) secure
messaging protocols.

We start by surveying the current state of secure messaging, the threat models, and the chal‐
lenges. We then explain how these guide the definition of cryptographic notions that capture
real‐life security requirements while enabling a rigorous scientific analysis.

We then delve into technicalmatters. Weexplain how to add post‐quantum security to the se‐
cure messaging protocol Signal in the case of conversations between two users. We conclude
this white paper by highlighting and addressing the scalability challenges of secure messaging
in a group setting.

The Need for SecureMessaging
The first section familiarizes a general audiencewith themain cryptographic notions studied in this
document. For a scientific audience, this section explains how prevalent security notions (such as
forward secrecy and post‐compromise security) are justified by concrete threats.

This introductory section provides a bird’s‐eye view of the secure messaging landscape, showcasing
the main actors (such as Signal, WhatsApp, Telegram, etc.), common threat models, and laying out a
few security notions. We opt for a top‐down approach, starting with broad and general considera‐
tions, then narrowing our focus to secure messaging protocols, which concentrates on the challenges
related to post‐quantum cryptography.

Making Signal Post-Quantum
The second section discusses how to provide post‐quantum security to the secure messaging pro‐
tocol Signal in the two‐party setting. We chose Signal for a few reasons: it is commonly considered
one of the most secure messaging protocols out there, and it is also one of the most involved from
a cryptographic standpoint, making its analysis both valuable and interesting.

At a high level, Signal can be decomposed into two sub‐protocols: X3DH for the initial handshake
phase, and Double Ratchet for ongoing conversations. Unfortunately, both sub‐protocols heavily
rely on the Diffie‐Hellman key‐exchange, a cryptographic construction that is not post‐quantum, and
forwhichwe don’t have a clear post‐quantum alternative. As a result, having a post‐quantum version
of Signal is non‐trivial.

In the second part of this section, we explain how these technical challenges have been addressed.
In a collaborativework accepted at PKC 2021, PQShield and academic researchers proposed the first
generic, post‐quantum alternative to X3DH [HKKP21]. Similarly, industry and academic researchers
proposed a generic, post‐quantum alternative to Double Ratchet [ACD19]. Together, both results
paved the way for deploying a post‐quantum variant of Signal.
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Scalable GroupMessaging Protocols
The third and final section discusses another challenge of secure messaging protocols: scalability
when considering large groups of users. It turns out that group secure messaging protocols have the
potential to quickly drain end users’ mobile data, which can have highly undesirable consequences.
This motivates a concrete need for group messaging protocols providing both efficiency and a high‐
security guarantee.

We compare the efficiency and security guarantees of four secure groupmessaging protocols: Sender
Keys (WhatsApp), PairwiseChannels (Signal), TreeKEM (Messaging Layer Security –MLS) andChained
CmPKE (proposed by PQShield and academic researchers at CCS 2021 [HKP+21]). All four proto‐
cols are either post‐quantum secure or easy to make so. Each of them explores a different corner of
the design space of messaging protocols, and each has a complementary strength. We also briefly
discuss how a ciphertext compression technique, presented by PQShield and academic researchers
at ASIACRYPT 2021 [KKPP20], significantly decreases the bandwidth consumption of TreeKEM.
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Acronyms
Table 1: Table of acronyms

Acronym Expansion

AEAD Authenticated encryption with additional data

AKE Authenticated key‐exchange

CmKEM Committing mKEM

DH Diffie‐Hellman

E2EE End‐to‐end encryption

FS Forward secrecy

HMAC Hash‐based message authentication code

KDF Key‐derivation function

KEM Key‐encapsulation mechanism

mKEM Multi‐recipient KEM

MLS Messaging Layer Security

PCS Post‐compromise security

PKE Public‐key encryption

PKI Public‐key infrastructure

PQS Post‐quantum security

SMA Secure messaging application

SMP Secure messaging protocol

SMPF Secure messaging platform

TLS Transport layer security

X3DH Extended triple Diffie‐Hellman
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1 The Need for SecureMessaging
This section introduces the reader to the cryptographic notions necessary to understand the
stakes, challenges, and eventually the design choices of secure messaging.

We first present the landscape of secure messaging (§1.1). We separate this landscape into
roughly two components: secure messaging applications (§1.1.1) on one side, and the legal
and technical tools leveraged to attack them (§1.1.2) on the other side.

We then show how we can map these real‐world constraints to technical and cryptographic
notions (§1.2). These notions are asynchrony (§1.2.1), end‐to‐end encryption (E2EE, §1.2.2),
forward secrecy and post‐compromise security (FS and PCS, §1.2.3), and post‐quantum secu‐
rity (PQS, §1.2.4).

1.1 The Landscape of SecureMessaging
Amessaging platform is an internet‐based platformwhose primary purpose is to allow its users to ex‐
change messages instantaneously. The use of messaging platforms has skyrocketed this last decade,
fueled by the increasing adoption of smartphones. In parallel, individuals have become increasingly
concerned about the confidentiality and privacy of their conversations, prompting efforts to design
secure messaging platforms.

On the other hand, state and private actors have developed a set of legal and technical tools to access
the content of individuals’ conversations without their consent. As is often the case in cybersecurity,
solutions used by one side (either platforms or attackers) inform the design of tools developed by the
other side. As a cryptography company, PQShield is naturally more inclined to adopt the viewpoint
of messaging platform designers. However, understanding both perspectives goes a long way in
comprehending why these platforms are designed the way they are.

1.1.1 (Secure)Messaging Applications
The most common way the users engage with messaging platforms is via mobile messaging applica‐
tions (e.g., on iOS or Android), as opposed to browser or desktop applications. It is therefore unsur‐
prising that the widespread adoption of smartphones during the last decade has been accompanied
by a meteoric rise in messaging platforms. Fig. 1 presents some of the most popular applications:
WhatsApp, iMessage, Signal, Telegram, etc. Due to this prevalence, the documented attack models,
attacks, and mitigations of said attacks are largely tailored to mobile messaging applications. We
also adopt this point of view.

While all of the messaging applications in Fig. 1 claim to be secure, we will see that some of them
have an elastic definition of what “secure” means, leading to significant differences in the security
guarantees they provide. These disparities are well‐documented but sometimes overlooked by the
general public, and we will discuss them in this section (see summary in Table 2, page 9). First, we
lay down some terminology in Fig. 2.

Fig. 2 illustrates the size of the attack surface of a secure messaging platform: a weakness in the
security of the protocol or the secure messaging application (SMA), or a compromise of the server
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Figure 1: Estimated market share of some prominent messaging applications.

or a device, can potentially have dramatic consequences for the end users. In this document, we
focus on the security of secure messaging protocols. Indeed, most of the cryptographic complexity
of secure messaging concentrates on the protocol layer and raises significant challenges for post‐
quantum security. This makes it a natural study topic for PQShield since we specialize in post‐
quantum cryptography. Note that many secure messaging protocols are designed with mitigations
in place for dealing with a potential compromise of the server and/or a device, as we will discuss
in‐depth in §1.2.

Figure 2: Each user has a (secure) messaging application (SMA) on their device ( , ).
The (secure) messaging protocol ( ) specifies the communications between the server ( ) and
the devices at the cryptographic layer. The (secure) messaging provider (SMP) specifies the messaging
protocol, operates the server and, typically, developed the messaging application.

1.1.2 Legal and Technical Attack Vectors
Since their popularisation about a decade ago, SMAs have been targets of choice for motivated at‐
tackers. Attackers may be state actors, companies, hackers, or sometimes a mixture thereof. We
review some of the main documented attack vectors. Note that many of these may not only com‐
promise conversations exchanged via SMAs but the entire contents of targeted devices.

Laws andWarrants (Legal)
A typical method employed by state actors is adopting laws that give state agencies the ability to
compel secure messaging providers to hand over information about their customers. In Fig. 2, this
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could correspond to providing all information transiting via the server ( ).

Awell‐documented example is the so‐called Yarovaya law thatwent into effect in 2018 in Russia. The
subsequent and highly publicized stand‐off between the Russian government and Telegram [EM21]
shows that the concrete application of such laws is not necessarily straightforward.

However, in the USA, subpoena‐backed access to server data seems common practice among law‐
enforcement agencies. In that regard, one enlightening source is an internal FBI document recently
made public via a Freedom of Information Act (FOIA) request1. This document summarises the data
that the FBI can request from major secure messaging providers, and we reproduce it on Page 45.
The extent of this surveillance is a great motivation for design choices detailed in §1.2.2.

Finally, warrantless seizure and search of electronic devices at border crossings are frequent.

Device Hacking (Technical)
Another method consists of hacking user devices to gain access to their conversations: this can be
done by brute‐forcing user passwords, leveraging zero‐day exploits, etc. This is becoming a common
practice in state agencies around the world, to the point that specialised companies such as NSO or
Cellebrite [Cel20] advertise this as part of their services. Sometimes the secure messaging applica‐
tion itself is the attack vector, as documented with a highly technical remote iMessage exploit by
NSO [Zer21].

Backdoors (Legal and Technical)
Finally, a legal and technical method is to compel device manufacturers and/or messaging platforms
to implement backdoors in their products to allow systematic access or monitoring of user content.

In Western countries, the discourse around this approach is heavily politicized, and backdoors are
often reframed by their promoters as “responsible encryption” or “client‐side scanning (CSS)” (see
[AAB+21] for a technical discussion of CSS). To the best of our knowledge, there is no widespread
adoption of such stringent measures in these countries, though we note that very recent EU law
proposals might change this status quo2.

On the other hand, an extensive series of reports by Citizen Lab3 show that some form of large‐scale
automated surveillance and censorship seems to be deployed in theWeChat/Weixin application. We
could not infer from the reports whether this censorship is performed by the WeChat platform or
by the Chinese government4.

1.2 How Real-World Constraints Impact Protocol Designs
We now discuss how real‐world constraints, including the threats discussed in §1.1.2, can be trans‐
lated into technical and cryptographic notions. Some prominent notions are given in Table 2, and
we will discuss each of them in a dedicated section.

1 https://propertyofthepeople.org/document-detail/?doc-id=21114562

2 TechCrunch: Europe’s CSAM scanning plan unpicked
https://techcrunch.com/2022/05/11/eu-csam-detection-plan/

3 Citizen Lab Research: WeChat Surveillance Explained
https://citizenlab.ca/2020/05/wechat-surveillance-explained/

4 WeChat is developed by Tencent and is based in China.
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Table 2: Popular messaging applications and properties on underlying protocols: support of asyn‐
chrony, end‐to‐end encryption (E2EE), forward secrecy (FS), post‐compromise security (PCS), and
post‐quantum security (PQS).
Taxonomy: not supported ( ), opt‐in or partial support ( ), enabled by default ( ). For each appli‐
cation, we distinguish conversations between two users ( ) and group conversations ( ).

WeChat LINE Telegram Messenger WhatsApp Signal

Asynchrony (§1.2.1)

E2EE (§1.2.2)

FS (§1.2.3)

PCS (§1.2.3)

PQS (§1.2.4)

1.2.1 Asynchrony
The first constraint is purely functional. Participants in a conversation may not be online at the same
time, and this has a higher chance of happeningwhenmultiple participants are involved and/or when
they span several time zones. Fig. 3 illustrates this constraint and how to address it: an always‐online
server ( ) operated by the secure messaging platform sits between the parties ( and ), storing
messages sent by one party and relaying them when the other party comes online. This is a simple
architectural choice, but it has several security implications (see §1.2.2).

MD MSG MD MSG
kA kBk k

Figure 3: Transport encryption and end‐to‐end encryption (E2EE). DATA k indicates that DATA
is encrypted using the symmetric key k. We use distinct colors for end‐to‐end encryption and trans‐
port encryption. The server shares a transport encryption key kA with Alice, another key kB with
Bob, and can therefore read the metadata MD. However, the end‐to‐end encryption key k is only
known to Alice and Bob, hence the server cannot read the message MSG.

1.2.2 End-to-End Encryption (E2EE)
This second constraint stems from the choice made in §1.2.1. All messages transit through a server
( ) operated by the secure messaging provider (SMP), which raises a natural question:

How much do we trust the SMP and the server it operates?

As highlighted in §1.1.2, there is a real possibility in many countries that state agencies can access
the contents of the server of the SMP. This poses an obvious threat to the privacy of the end users
of the messaging platform.
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End‐to‐end encryption (or E2EE) provides a partial answer to this threat. The principle of E2EE is
that the contents of a message sent between two endpoints (in our case, the end users) cannot be
read or modified by any entity between the endpoints. This is illustrated in Fig. 3, where Alice ( )
and Bob ( ) exchange encrypted messages via a server ( ), and a layer of E2EE prevents the server
from reading the messages. While E2EE is nowadays a fairly standard notion for secure messaging
applications, some high‐profile SMPs are still in the process of enabling it by default; for example
LINE, Telegram and Facebook Messenger propose it as an opt‐in feature (under the terms “Letter
Sealing”, “Secret Chat” and terms “Secret Conversation”, respectively).

Transport Encryption and E2EE
In secure messaging, we need to consider two layers of encryption: transport encryption (orange in
Fig. 3) and E2EE (green in Fig. 3). This document focuses on E2EE, since it encompasses most tech‐
nical challenges. Indeed, transport encryption is fairly straightforward in comparison, as it deals with
a setting similar to TLS: one server, one client and synchronous communications. Transport encryp‐
tion protocols used by major providers, for example MTProto (Telegram) and Noise (WhatsApp), are
indeed variants of TLS.5 Post‐quantum alternatives to TLS are well‐studied [Lan18,Kwi19,SSW20],
and we expect them to be easy to adapt for transport encryption.

Limitations of E2EE
For all its merits, E2EE still suffers from some limitations. A few of these are listed below, and merely
illustrate two simple facts: (a) in secure messaging, not all data is necessarily protected by E2EE, and
(b) data protected by E2EE can be leaked outside of the E2EE protocol.

▶ Metadata collection. As illustrated in Fig. 3, metadata such as the social graph of users (“who
talks to whom”) are typically only encrypted at the transport layer, not the E2EE layer. As such,
they can easily be recovered from the server data by motivated attackers (see Page 45). Proto‐
cols such as Sealed Sender [Sea18] and Private Groups [Pri19] by Signal protect such metadata
from the server.

▶ Device compromise. If the device of a user is compromised (e.g., via hacking or seizure by
authorities), so will the contents of their conversation, regardless of how strong E2EE is. For‐
ward secrecy and post‐compromise security, discussed in §1.2.3, provide some partial mitiga‐
tion when the scope of compromise is limited in time. However, they would not address more
powerful threat models such as client‐side scanning or backdoors.

▶ Unencrypted cloud backups. As often in cyber‐security, the devil is in the details. Strong E2EE
is pointless if the information it protects can leak via other means. For example, if E2EE is ap‐
plied to conversations but not to cloud backups, then a state authority can request the contents
of cloud backups and completely bypass E2EE conversations. This is already observed in the
wild6. One could assume that E2EE cloud backups are standard practice, but this is far from
being the case. For example, iMessage does not provide E2EE cloud backups, and WhatsApp
has only rolled out this feature very recently7.

5 MTProto: https://core.telegram.org/mtproto. Noise: https://noiseprotocol.org/.

6
Forbes: Meet The Secretive Surveillance Wizards Helping The FBI And ICE Wiretap Facebook And Google Users
https://www.forbes.com/sites/thomasbrewster/2022/02/23/meet-the-secretive-
surveillance-wizards-helping-the-fbi-and-ice-wiretap-facebook-and-google-users/

7 Engineering at Meta: HowWhatsApp is enabling end‐to‐end encrypted backups
https://engineering.fb.com/2021/09/10/security/whatsapp-e2ee-backups/
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We note that the geographical location of servers storing backups may depend on several
factors (the location of the user, the secure messaging provider, financial incentives, etc.), and
backups may be duplicated across several data centers (“geo‐redundancy”). These points make
the security implications of unencrypted cloud backups even murkier.

1.2.3 Forward Secrecy and Post-Compromise Security
E2EE is a good security baseline, but it does not suffice to address the unique security challenges
arising in secure messaging. Unlike TLS sessions, conversations on messaging platforms can last
months, if not years. Under these conditions, it becomes plausible that a participant in a conversation
will see their device compromised at some point during the conversation. This can be caused by a
hack or by the physical seizure of the device, and raises the following question:

To what extent can we protect our messages in face of a device compromise?

The response to this question is multi‐pronged. At the application level, Telegram allows members
of a group conversation the ability to erase messages, including those sent by other group mem‐
bers. Concurrently, one could set messages to disappear upon reading and/or after a fixed time limit
(disappearing messages), an approach supported by Telegram, Signal, and WhatsApp among others.

To be meaningful, these application‐level solutions must be completed by equally strong guarantees
at the protocol level. In other words, the secure messaging protocol should have mechanisms in
place that would limit an adversary’s ability to read past and future messages, even if said adversary
has compromised the server and one or more user devices. For instance, if the adversary stored all
the encrypted conversations sent between the users, then a device compromise could allow him to
decrypt all prior conversations, making any protection at the application‐level ineffective.

No advanced security

Forward secrecy (FS)

Post‐Compromise Security (PCS)

Post‐Compromise Forward Security (PCFS)

Figure 4: FS, PCS and PCFS. Assuming an attacker compromises the session at a given time ( ),
each security notion guarantees that epochs in pistachio green ( ) remain secure. No security
guarantee is made for epochs in red ( ). For PCS and PCFS, a delay is sometimes required before
security is recovered.
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Forward Secrecy (FS)
Informally, forward secrecy (FS) guarantees that if a user is compromised at a given time, then the
contents of his prior conversations remain secure (see Fig. 4). This preserves security of the ex‐
changed conversations happening before a compromise. As a concrete example, a protestor whose
mobile phone is seized by the authorities may want to preserve the confidentiality of their past
conversations.

At the application layer, FS is provided by disappearing messages, though we note that SMAs which
propose it (Signal, WhatsApp, Telegram, etc.) often make it an opt‐in feature. At the protocol layer,
FS must guarantee that an attacker learning the cryptographic keys of a user cannot decrypt the
contents of his prior conversations (even if the attacker learns long‐term decryption or signing keys).
Some high‐profile SMPs provide E2EE but do not provide FS at the E2EE layer, see for example
LINE [LIN20] and Threema [Thr21,Soa21]. In §2 we will discuss various means of achieving FS.

Post-Compromise Security (PCS)
Post‐compromise security (PCS) is concerned with preserving security of the exchanged conversa‐
tions happening after a compromise. This notion, first formally introduced in [CCG16], is comple‐
mentary to FS that concerns security before a compromise. The long lifetimes of mobile devices
and of the secure conversations they host provide natural motivations for PCS. As a first example,
consider a user whose mobile device gets hacked by exploiting a zero‐day vulnerability; the vul‐
nerability later gets patched, and the hacker no longer has access to the mobile phone. As a second
example, a traveling user may have their device confiscated by border customs for examination, then
returned a few hours later. In both examples, there is a significant chance that the device content is
compromised, including cryptographic keys. How can we heal from such a device compromise?

At first glance, it seems extremely difficult to preserve meaningful security guarantees in such sit‐
uations. It turns out that if we consider the adversary to be passive during a sufficiently long period
after the compromise, a reasonable level of PCS can be obtained by rotating cryptographic (public)
keys in a specific manner during this period. This practice is sometimes called (interactive) ratcheting.
We discuss interactive ratcheting for the classical two‐party setting (§2.1.3), the post‐quantum two‐
party setting (§2.2.2), and the group setting (§3). Note that interactive ratcheting can be bandwidth‐
expensive; Signal andWhatsApp currently are the only widespread SMAs who implement this prac‐
tice and therefore achieve PCS.

1.2.4 Post-QuantumSecurity
Post‐quantum security (PQS) guarantees that security properties such as confidentiality, integrity,
etc., are still upheld in the presence of adversaries equipped with large‐scale quantum computers.
With the upcoming standardization of post‐quantum cryptographic primitives by organizations such
asNIST [NIS20], it becomes increasingly urgent to adapt existing protocols in order to integrate these
quantum‐safe primitives. We invite interested readers to read our white papers on post‐quantum
cryptography [PQS20] and one of the post‐quantum cryptographic standards [PQS21].

Of all the secure messaging applications we have mentioned so far, none currently achieve PQS.
Augmenting existing SMP designs with PQS raises several challenges in terms of feasibility, effi‐
ciency, and scalability. Thankfully, an increasing number of these challenges are being solved, either
by members of PQShield or by external researchers. We discuss the challenges and how to solve
them in §2 and §3.
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2 Making Signal Post-Quantum
The Signal protocol is widely regarded as the gold standard for establishing secure messaging
between two users. However, the cryptographic problem underlying its security is known to
be easily solvable by quantum computers, and any adversary harvesting current communica‐
tions would be able to uncover the exchanged messages in the future. This warrants concern
to entities in the long‐term security and motivates the need for a post‐quantum secure (PQS)
secure messaging protocol.

This section studies the Signal protocol and explains the main obstacles to making it PQS.
It then shows several recent solutions to overcome these obstacles and illustrates how they
can be combined into a PQS protocol that achieves the same functionality and (in fact, better)
level of security as the Signal protocol.

2.1 Overview of the Signal Protocol
While there has been a range of secure messaging protocols, the Signal protocol [SIG] is typically
considered the reference when it comes to secure messaging between two users (see Table 2). Not
only is it used in the Signal application, but variations of the core protocol are also deployed within
various other applications such as WhatsApp, Messenger’s Secret Conversations, and Skype private
conversations. Understanding the design principle of the Signal protocol will help us understand
other secure messaging protocols — including those with weaker security guarantees —with relative
ease.

Below, we dissect the Signal protocol and explain how appealing security properties like forward
secrecy (FS, see §1.2.3) and post‐compromise security (PCS, see §1.2.3) are guaranteed. We then
explain in §2.2 the obstacles for turning the Signal protocol post‐quantum secure and provide recent
solutions by industry and academic researchers to overcome them. This section focuses on secure
messaging protocols (SMPs) between two users, and the group setting is deferred to §3.

2.1.1 The Players andGoal of the Signal Protocol

We name ( and ) in the figures as Alice and Bob, respectively. Recall that an SMP required an
always‐online server to operate between Alice and Bob for them to communicate asynchronously
(see §1.2). With this in mind, we can state the question solved by the Signal protocol:

HowcanAlice andBobasynchronously exchangemessages securelywith the help of apossibly
malicious server?

Notice that considering a protocol to be secure against a malicious server provides strong security;
for instance, the conversations remain secure even if state actors accessed the server data. Using
slightly more technical terms, this question can be further divided into two questions.

(Q1) How can Alice and Bob establish a shared key with a possibly malicious server in between?

(Q2) How can Alice and Bob guarantee FS and PCS even when the shared secret key gets compromised?
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X3DH

Double
Ratchet

. . . . . .

Figure 5: A modular view of the Signal protocol, decomposed as the X3DH and Double Ratchet
protocols.

▶ X3DH: See Fig. 7 for a description, and Fig. 9 for a post‐quantum variant.
▶ Double Ratchet: See Fig. 8 for a description, and Fig. 11 for a post‐quantum variant.

Unlike the case of transport encryption (see §1.2.2), the answer to (Q1) is not as simple as “Use TLS”
due to the asynchronicity between Alice and Bob. In the next subsections, we explain at a high
level how the Signal protocol answers both (Q1) and (Q2). Specifically, the Signal protocol is divided
into two sub‐protocols called the X3DH (for Extended Triple Diffie‐Hellman) [MP16b] and Double
Ratchet [MP16a] protocols, which answer (Q1) and (Q2) respectively. This is illustrated in Fig. 5.

2.1.2 Solution to (Q1): The X3DH Protocol
The goal of the X3DH protocol is to asynchronously establish a secure key (which we call a session
key) between Alice and Bob. The session key is usedwithin the Double Ratchet protocol to exchange
messages. We explain the X3DH protocol in two steps.

STEP 1. The X3DH protocol builds implicitly on the following Diffie‐Hellman (DH) based authenti‐
cated key exchange (AKE) protocol AKEX3DH depicted in Fig. 6. In this figure, lpkX (resp. lskX) denotes
the long term public (resp. secret) key for user X ∈ {A (Alice),B (Bob)}, KDF is a key derivation func‐
tion (for example the HMAC‐based HKDF [Kra10]), and K is the exchanged session key. Moreover,
Sign and Verify are the signing and verification algorithms of an XEdDSA signature [Per16].

At a high level, Alice and Bob can be seen as running three (dependent) DH AKE protocols whose
goal is to share the values gay, gbx, and gxy, respectively. AKEX3DH combines all three values into one
session key K via a KDF. For our purpose, it suffices to understand that the signature σA allows
Bob to explicitly know that Alice generated gx. Now, informally, as long as one of gay, gbx, or gxy is
unknown to the adversary, then the output of the KDF remains random over its output domain. For
instance, even if both the long term secret keys lskA and lskB are compromised after Alice and Bob
finished the key exchange protocol, an adversary cannot compute the term gxy due to the hardness
of the decisional Diffie‐Hellman (DDH) problem. Since gxy is unknown, the session key Kwill remain
secure.
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(lpkA = ga, lskA = a)
(
lpkB = gb, lskB = b

)

Generate x←$Zp

σA ← Sign(lskA, gx)

}
Verify(lpkA, σA, gx)

?
= ⊤

Generate y←$Zp

K := KDF(gay, gbx, gxy) K := KDF(gay, gbx, gxy)

(σA, gx)

gy

Figure 6: DH‐based AKE protocol AKEX3DH underlying the X3DH protocol. The exchanged con‐
tents (σA, gx) and gy are sent over a non‐authenticated insecure channel.

Other Types of DH‐based AKE Protocols

Some natural questions are why gab is not fed to the KDF or whether there are any other ways
to derive session keys from the tuple (ga, gx, gb, gy). Indeed, many other similar DH‐based AKE
protocols mainly differ in the derivation of the session key K from the tuple (ga, gx, gb, gy). Some
famous AKE protocols are HMQV [Kra05], NAXOS [LLM07], and T S2 [JKL04]. Depending on
how the session key is derived, they offer better efficiency or, in some cases, provide stronger
security properties. Notably, it could be possible to consider an alternative X3DH protocol
starting from a different type of DH‐based AKE protocol. For further reading, [CCG+19, Table
1] provides a list of known DH‐based AKE protocols.

How Are Long Term Keys Exchanged?

One issuewe glossed over in the above discussion is howAlice andBob exchange their long‐term
public keys lpk; the computation of K implicitly relied on knowledge of the peer’s lpk. Generally,
this is solvable by a public key infrastructure (PKI), where an authenticated list of user long‐term
public keys is publicly stored. In case PKI is not part of the SMA ecosystem (as in the case of the
Signal app), users may compare their lpk manually or by scanning a QR code using a different
channel. Methods for such out‐of‐bound authentication are outside the scope of this document.
See [Wha21,Vau05,RS18] for more details.

STEP 2. The X3DH protocol turns AKEX3DH into an asynchronous protocol by putting an always‐
online server in between Alice and Bob as depicted in Fig. 7. We can decompose the X3DH protocol
in two phases, each corresponding to the respective values sent by Alice and Bob in Fig. 6.

▶ Registration Phase: All users upload to the server three cryptographic values: the long term
public key lpk, a pre‐key signature σ, and a signed pre‐key gx. These three values — called the
pre‐key bundle — correspond to (lpkA, σA, gx) in Fig. 6.

▶ Session Key Establishment Phase: When Bob wishes to start a secure messaging session with
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Alice, Bob first fetches the pre‐key bundle of Alice from the server. If Alice’s pre‐key signature
σA is valid, then Bob sends gy to the server as in Fig. 6. As explained in §2.1.3, Alice and Bob
use the derived session key K to send encrypted messages via the Double Ratchet protocol.
Alice can retrieve gy from the server once online to establish the same session key K as Bob.

(lpkA = ga, lskA = a)
(
lpkB = gb, lskB = b

)

Generate x←$Zp

σA ← Sign(lskA, gx)

} 
Verify(lpkA, σA, gx) = ⊤

Generate y←$Zp

K := KDF(gay, gbx, gxy)

K := KDF(gay, gbx, gxy)

lpkA

long‐term key

lpkB

long‐term key

(σA, gx)

pre‐key signature
+ signed pre‐key

lpkA, (σA, gx)

gy

response
lpkB, gy

Figure 7: The X3DH protocol. Upon registration (in blue ), users upload their pre‐key bundle to the
server. Users can upload multiple pre‐key signatures and signed pre‐ keys (σA, gx) for better security
(see below for the detail). At any moment, Bob can fetch Alice’s pre‐key bundle and run AKEX3DH

(in orange ).

One salient property of X3DH is receiver obliviousness: users do not need to know who they will
be communicating with at the registration phase. For instance, Alice’s pre‐key bundle can also be
used by another user Charlie. This feature is essential to any instantaneous SMA since otherwise,
users who wish to talk to Alice must wait till she uploads a pre‐key bundle designated for them.

Security of the X3DH Protocol
The X3DH protocol (Fig. 7) inherits almost all of the strong security guarantees offered by the un‐
derlying AKE protocol AKEX3DH (Fig. 6). This is because AKE protocols are by design, supposed to
remain secure even if an attacker (i.e., a malicious server) sits in between the users.

The only subtle difference between the two protocols is that while the pre‐key bundle of Alice is
never reused in AKEX3DH, it is reused in the X3DH protocol. More precisely, Alice never uses the
same (σA, gx) in AKEX3DH. The effect of this difference only shows up when the security of the AKE
protocol fails.

When an adversary compromises both the long‐term secret and the session‐specific randomness
(lskA = a, x), he can easily compute the session key K. However, since the content (σA, gx) sent by
Alice is never reused, the only session key that becomes compromised is the session that used gx.
On the other hand, for the X3DH protocol, since Alice’s pre‐key bundle is reused by many users, all
of the session keys established by Alice become compromised. Put differently, by reusing the same
pre‐key bundle, the number of session keys that become insecure in case of a total compromise of
Alice’s device ismore devastating for the X3DHprotocol than the underlying AKE protocolAKEX3DH.

There are two ways the X3DH protocol mitigates the scope of compromise. The first way is to
minimize the number of sessions that reuse a particular pre‐key bundle. This is accomplished by
periodically refreshing and uploading a newly signed pre‐key and pre‐key signature, e.g., every week
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ormonth. The othermore secureway is to never reuse the same pre‐key bundle. The X3DHprotocol
allows each user to optionally upload many one‐time pre‐keys of the form ga1 , ga2 , · · · that are deleted
from the server once fetched by some user. This component (or more precisely gaiy) is then included
in theKDF to derive the session key. Since this solution requires more storage for the server, there is
a tradeoff between efficiency and security. More details on the specification and security guarantees
of the X3DH protocol can be found in [MP16b].

We note that even if the exchanged session keys become compromised, the Signal protocol has an
elegant way of healing the compromise, achieving PCS in the process. This is achieved by the Double
Ratchet protocol explained next.

2.1.3 Solution to (Q2): The Double Ratchet Protocol
The Double Ratchet protocol allows users Alice and Bob to securely send messages by using the
session key established via the X3DH protocol. The main innovation of Double Ratchet is to update
the session key for every message to provide a fine‐grained level of both FS and PCS. The Double
Ratchet protocol can be broken up into an local ratchet protocol and an interactive ratchet protocol8,
each ratchet respectively takes care of FS and PCS. While we have discussed in §1.2.3 the informal
definitions and motivations behind FS and PCS (the what and why), we now discuss how we can
achieve these security notions.

FS and the Local Ratchet
FS guarantees that even if a shared secret key between Alice and Bob is compromised, the key
cannot decrypt past encrypted messages (see §1.2.3). This is accomplished efficiently by updating
the key in an irreversible manner using a KDF. Let us denote the current secret key as ck1 (short for
chain key). Alice can use a KDF to create two keys (ck2,mk1)← KDF(ck1) where ck2 is the updated
secret key andmk1 (short formessage key) is the secret key used to encrypt message msg1. Alice can
repeat the process by feeding ck2 into a KDF to obtain ck3 and the secret key mk2 to encrypt the
following message msg2. Since inverting the KDF is a hard problem, even a complete compromise
of ck3 does not expose previous (mki, cki)i∈[2], thus achieving FS.

Looking ahead, this is precisely what the local ratchet protocol does. We call it “local” since this pro‐
tocol is internal to Alice. Namely, Bob with the shared secret key ck1 can run the same deterministic
process without Alice’s help to maintain the same chain of secret keys.

PCS and the Interactive Ratchet
PCS guarantees that even if the shared secret key is compromised, the key cannot decrypt future
encrypted messages (see §1.2.3). Put differently, PCS allows the user to heal. As a first attempt
to realize PCS, Alice may inject fresh randomness to update the secret key. If the randomness is
unknown to the adversary, then the resulting updated secret key is healed. However, this is not yet
enough: Alice needs to tell Bob what kind of randomness was added for Bob to be able to maintain
the same shared updated key. Clearly, Alice cannot send the randomness in the clear since the
adversary can combine it with the compromised old secret key. For the same reason, Alice cannot
encrypt the randomness using the old secret key since the adversary can simply decrypt it.

To solve this issue, we notice that while Alice’s secret state is compromised, Bob’s isn’t. Alice can

8 The former and latter are coined as “symmetric‐key” ratchet and “Diffie‐Hellman” ratchet in the Signal white pa‐
per [MP16a]. We choose the term local and interactive to make the distinction between the two protocols clear.
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therefore take advantage of this asymmetry.9 Assume Bob has previously sent gr̂1 . Then, Alice,
whose secret state is compromised, samples randomness r̂2←$Zp and updates the shared key K1
as K2 ← KDF(K2, (gr̂1)r̂2). By the hardness of the DDH problem, gr̂1 ·̂r2 looks random to an adversary
without knowledge of r̂2, and hence, K2 remains secure. Moreover, Alice can send gr̂2 to Bob in the
clear as in an ordinary DH key exchange protocol, where Bob can compute gr̂1 ·̂r2 as (gr̂2)r̂1 using his
knowledge of the secret r̂1. With this, Bob can also derive the same updated secret key K2. Note
that we can swap the roles of Alice and Bob; in this case, Bob samples randomness r̂3 and proceeds
as Alice did to achieve PCS and recover from a compromise.

Looking ahead, this is precisely what the interactive ratchet protocol does. We call it “interactive”
since this protocol needs both Alice and Bob to participate.

Double Ratchet = Local Ratchet + Interactive Ratchet
With the local and interactive ratchet protocols explained, it remains to glue the two protocols to‐
gether to obtain the Double Ratchet protocol. A high‐level illustration of Double Ratchet is provided
in Fig. 8. Below, we provide a step‐by‐step explanation of the protocol.

Process 1 : Alice sends messages (msg2,i)i to Bob. Here, we assume Alice and Bob already share a
session key K1 and Bob sent gr̂1 in the previous round (see insert on page 20 for the initial round). In
1 , Alice first runs the sender part of the interactive ratchet protocol: it samples a fresh randomness
r̂2←$Zp and computes gr̂1 ·̂r2 . She then runs (K2, ck2,1) ← KDF(K1, gr̂1 ·̂r2), where K2 is the updated
session key and ck2,1 is the chain key. Observe that this invocation of the KDF is how the local and
interactive ratchets are combined.

Process 2 : Alice runs the local ratchet protocol as in the figure to derive a message key mk2,i to
encrypt message msg2,i. Here, mk2,i is used only once.

Process 3 : Alice sends gr̂2 generated by the interactive ratchet protocol and the encrypted mes‐
sages (Encmk2,i(msg2,i))i to Bob.

10

Processes 4 and 5 : Bob runs the receiver part of the interactive ratchet protocol to derive gr̂1 ·̂r2 .
Using this and the old shared session key K1, Bob can derive the secret keys that Alice can. This
allows Bob to decrypt all the encrypted messages.

Processes 6 : Changing the roles of Alice and Bob, Bob now sends messages (msg3,i)i to Alice using
K2 and gr̂2 . Specifically, Bob replicates the processes 1 to 3 .

Finally, as explained earlier, the Double Ratchet protocol inherits FS and PCS from the underlying
local and interactive ratchet protocols, respectively.

9 If Alice and Bob’s internal states are compromised simultaneously, then nothing can be done.

10 To be precise, the encryptedmessages also include amessage number as an associating data, and theDouble Ratchet
handles lost or out‐of‐order messages.
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Local Ratchet

Local Ratchet

Interactive
Ratchet (Sender)

Interactive
Ratchet (Receiver)

Interactive
Ratchet (Sender)

Interactive
Ratchet (Receiver)

K1

KDF

K2

KDF

ck2,1

KDF mk2,1

ck2,2

KDF mk2,2

ck3,1

K1

KDF

K2

KDF

ck2,1

ck3,1

KDFmk3,1

(gr̂1)r̂2 gr̂2

r̂2 ← Zq

(gr̂2)r̂1

r̂1 ∈ Zq

gr̂2 ,
(
Encmk2,i(msg2,i)

)
i

3

(gr̂2)r̂3gr̂3

r̂3 ← Zq

(gr̂3)r̂2

r̂2 ∈ Zq

gr̂3 ,
(
Encmk3,i(msg3,i)

)
i

5

1

2

4

6

Figure 8: The Double Ratchet protocol. The circled numbers indicate the order of the data flow.
Solid arrows indicate operations that are one‐way (due to KDF or the DDH/DLOG assumptions);
white boxes are secret keys; light gray boxes are public keys; black boxes denote KDF evaluation;
double‐edged boxes feature that the value is only known to one party, and the dotted arrows indicate
the data transmitted between Alice and Bob where msgj,i is the i‐th message sent at epoch j.
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Initial Interactive Ratchet

If this is the first round right after the X3DH protocol (i.e., Bob sends messages to Alice in Fig. 7
as part of the response), then there are several options for how gr̂0 is derived. In the deployed
version of the X3DH protocol by Signal, Bob uses the signed pre‐key gx included in Alice’s pre‐
key bundle as gr̂0 . Alternatively, we can let users to upload several gr̂0 during in the registration
phase so that distinct gr̂0 are used by each conversation. While the former provides better
efficiency, the later provides stronger security in face of a compromise.

2.2 Making Signal Post-QuantumSecure
The X3DH and Double Ratchet protocols build heavily on the unique commutative property of the
DH key exchange protocol. Without a proper intuition of their design rationales, one may even
believe that the DH key exchange is an indispensable ingredient to these protocols.

In this section, we show how to mimic the functionality and security guarantee of the X3DH and
Double Ratchet protocols while only relying on standard cryptographic tools such as KDFs, digi‐
tal signatures, and key encapsulation mechanisms (KEMs). A post‐quantum secure Signal protocol
naturally follows by instantiating these tools in a post‐quantum secure manner.

Generic/Post-QuantumAnalog of Diffie-Hellman
Before diving into the main content, we take a slight detour and explain the distinctive feature of the
DH key exchange. The commutativity of the operations in DH key exchange, namely (ga)b = (gb)a,
gives it one of its main strength: non‐interactivity. By using Alice’s public key ga, Bob can compute a
key gab without explicitly communicating with Alice, and vice versa. This property is unique to DH‐
based protocols, and for instance, some impossibilities for achieving similar properties from popular
post‐quantum tools such as lattices and codes are known [GKRS20]. A non‐interactive protocol is
obtainable from supersingular isogenies [CLM+18, DG21] — another popular post‐quantum tool.
However, they are either inefficient or require users to prove the well‐formedness of the long‐term
public key. Other works have tried to model the essence of the DH key exchange using a generic
cryptographic primitive such as split KEMs [BFG+20] but so far, we only know how to construct
them from the DH protocol.

In summary, a simple and efficient replacement of the implicit DH key exchange in the Signal protocol
by post‐quantum primitives is not a viable option. In §2.2.1 and §2.2.2, we explain how to replicate
the X3DH and the Double Ratchet protocols without relying on the unique commutative property
of the DH key exchange.

2.2.1 Post-QuantumSecure X3DH Protocol
Recall the two steps we took to explain the X3DH protocol in §2.1.2. Once we have a “nice” AKE
protocol similar to AKEX3DH as explained in Step 1 (see Fig. 6), turning it into an X3DH‐like protocol
following Step 2 is straightforward. Thus, we only need to focus on constructing a generic AKE
protocol with “nice” properties, which we elucidate below.

(P1) Receiver Obliviousness: The first value sent by the sender (i.e., Alice in Fig. 6) is independent of
the receiver (i.e., Bob in Fig. 6). This was required since on time of registration to themessaging
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application, the users may not know who they will be communicating with (see Fig. 7).

(P2) Compromise Resistance: The exchanged session key remains secure even if all non‐trivial com‐
binations of secret information are compromised. Note that if Alice’s or Bob’s long term and
ephemeral secrets (a, x) or (b, y) are compromised, then an adversary can trivially compute the
exchanged secret. A non‐trivial combination points to anything else.

While there have been numerous generic constructions of AKE protocols [FSXY12, FSXY13,KF14,
YCL18,XLL+18,HKSU20,XAY+20], including but not limited to post‐quantum secure ones, all known
constructions satisfying both (P1) and (P2) are limited to DH‐based AKE protocols.11

Combining Digital Signatures and KEMs to Replicate the X3DH Functionality
PQShield and academic researchers together proposed at PKC 2021 [HKKP21], the first generic
AKE protocol satisfying both (P1) and (P2). The AKE protocol only relies on KDFs, digital signatures,
and KEMs, all of which we know how to instantiate efficiently in a post‐quantum manner. The
protocol is described in Fig. 9. KeyGen, Encap, and Decap are the key generation, encapsulation,
and decapsulation algorithms of a KEM, and (ek,dk) is the encapsulation and decapsulation keys.
Sign and Verify are signing and verification algorithms of a digital signature scheme, and (vk, sk) is
the verification and signing keys.

lskA := (skA,dkA) lskB := (skB,dkB)
lpkA := (vkA, ekA) lpkB := (vkB, ekB)

(ekT,dkT)← KEM.Keygen()
σA←$ Sign(skA, ekT) Verify(vkA, σA, ekT)

(ctA,KA)←$Encap(ekA)
Verify(vkB, σB, (ctA, ctT)) (ctT,KT)←$Encap(ekT)

KA ← Decap(dkA, ctA) σB←$ Sign(skB, (ctA, ctT))
KT ← Decap(dkT, ctT) K← KDF(KA,KT)

K← KDF(KA,KT)

lpkA, (ekT, σA)

pre‐key bundle

lpkB, ctA, ctT, σB
response

Figure 9: The AKE protocol underlying our generic X3DH protocol.

One can see from Fig. 9 that Alice and Bob share the same session key K, and the content sent by
Alice is independent of Bob’s identity as required by (P1).

Security
We explain how this protocol satisfies (P2). To this end, let us draw a parallel between the exchanged
contents in the AKE protocol AKEX3DH underlying X3DH (Fig. 6) and our AKE protocol (Fig. 9). This
is summarized in Fig. 10.

Classical X3DH. Recall in AKEX3DH, the partial secret gxy is shared as follows: Alice first sends a
freshly sampled gx; Bob samples y and sets the shared secret as gxy; Bob sends gy to Alice, and Alice

11 There are protocols that satisfy the two properties if secure erasure of memory is possible. We seek solutions
without making such a hardware assumption.
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AKEX3DH Ours AKEX3DH Ours AKEX3DH Ours

Alice (pub. / priv.) gx/x ekT/dkT ga/a ∈ lpkA/lskA ekA/dkA ∈ lpkA/lskA gx/x n/a

Bob (pub. / priv.) gy/y ctT/KT gy/y ctA/KA gb/b ∈ lpkB/lskB n/a

Shared partial secret gxy KT gay KA gbx n/a

Figure 10: Relationship between exchanged values of AKEX3DH and our AKE protocol. (pub. / priv.)
denotes the public and private values of Alice and Bob. For AKEX3DH, the shared partial secrets
gxy, gay, gbx are used to derive the shared session key K. n/a indicates that no such analog exists in
our AKE protocol. Note that gx/x and gy/y may hold different purposes for different shared partial
secrets — this is why there is an analog of gx for gxy, while there isn’t for gbx.

derives gxy using x. This is replicated in our AKE protocol by replacing gx with the freshly sampled
encapsulation key ekT, gxy with the key KT of the KEM, and gy with the ciphertext ctT. Looking at
how the components relate to each other in Fig. 10, we see that as long as the sampled secrets (x, y)
or dkT are not compromised, then gxy or KT remain secure. The same analogy can be made for the
partial secret gay and KA by relating (a, y) with lskA. Specifically, the security properties of gxy and
gay in AKEX3DH are replicated by KT and KA in our AKE protocol.

The interactivity issue. Unfortunately, a similar analogy for gbx fails. Notably, this is where AKEX3DH

relies on the unique non‐interactiveness of the DH key exchange. Even if Alice does not know Bob—
as required by (P1) — Alice can prepare gx ahead of time so that Bob can establish a key gbx with
Alice. If we tried to replicate this with KEMs, then Alice would need to know Bob’s encapsulation
key ekB at registration, which contradicts (P1).

Our solution. Our AKE protocol solves this issue by asking Bob to sign ctA and ctT. Let us explain the
high‐level intuition. From Alice’s perspective in AKEX3DH, gbx is a term that can only be computed by
Bob. Moreover, since the session key K is derived by feeding gbx to the KDF, if the communicating
peer uses the sameK as Alice, then she is implicitly convinced that the peer is Bob. Our AKE protocol
performs this implicit check made by Alice explicitly by asking Bob to add his signature instead.
Intuitively, a user capable of creating a valid signature for Bob’s verification key vkB can only be Bob.
This is roughly why the security of gbx in AKEX3DH is replicated by σB in our AKE protocol. Note that
σB does not need to be fed to the KDF since as opposed to gbx, σB explicitly convinces Alice that the
communicating peer is Bob.

Conclusion. By relating the security of gxy, gay, and gbx to KT,KA, and σB, respectively, we are able
to achieve the same (or in fact slightly stronger) security guarantee as AKEX3DH. Our AKE protocol
is based on KDFs, digital signatures, and KEMs, and can be used as a drop‐in replacement of the
X3DH protocol. For those interested in the complete security analysis of our AKE protocol and a
more detailed comparison with the X3DH protocol, we refer to [HKKP21].
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Deniability of Establishing Communication

One subtle difference between AKEX3DH and our AKE protocol is that the signature σB leaves
evidence that Bob tried to engage in a conversation with Alice.a If necessary, there are several
ways to add deniability to such a fact. At the application layer, Bob can periodically update his
signing key and publish his old signing key skB. Once skB is public, then anybody could have
generated σB, so Bob can no longer be held accountable.
At the protocol layer, Bob can derive a one‐time‐pad key KOPT as (K,KOPT) ← KDF(KA,KT)

and send an encryption ctOPT = KOPT ⊕ σB of σB. Alice then verifies σB by first decrypting the
ciphertext. We can further strengthen the type of achieved deniability by relying on anonymity
enhancing tools such as ring signatures with relatively low overhead. For those interested, more
details are provided in, for example, [MP16b,HKKP21,BFG+22].

a
Note this is different from Bob being held accountable for his sent encrypted messages. Recalling that the
messages are sent using symmetric key encryption in Double Ratchet, Alice sharing the same session key as
Bob could have also generated the encrypted message.
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2.2.2 Post-QuantumSecure Double Ratchet Protocol
Compared with the X3DH protocol, Double Ratchet was constructed more modularly. As explained
in §2.1.3, it consists of local and interactive ratchet protocols, combined together by a KDF. More‐
over, the local ratchet protocol only consists of running another KDF in a sequential manner. Since
we have efficient KDFs using only symmetric cryptography, a post‐quantum instantiation of the lo‐
cal ratchet protocol is simple. Therefore, the only component of Double Ratchet that is not readily
post‐quantum is the interactive ratchet, due to its heavy reliance on the DH key exchange.

Using KEMs to Replicate the Interactive Ratchet
The interactive ratchet is responsible for achieving PCS (see §2.1.3). ADHkey exchange is performed
in a ping‐pong fashion between Alice and Bob to update their internal states sequentially. This is
illustrated in processes 1 , 3 , and 4 in Fig. 8.

After going through the generic X3DH protocol in the previous section, it is easy to see that such a
DH key exchange can be replicated by a KEM. Unlike X3DH, Double Ratchet does not use specific
properties of the DH key exchange (such as its non‐interactivity), and replacing DHwith a KEM can
be done straightforwardly. Specifically, we refer the readers to the second and third columns of
Fig. 10 to recall the relationship between the DH key exchange and KEM. With this knowledge, we
can instantiate the interactive ratchet protocol using KEMs as in Fig. 11.

Recall that to update the shared secret key K1, Alice must update it using freshly sampled random‐
ness and also needs to send this information over to Bob. This is accomplished in process 1 by first
running (K′

1, ct1)←$Encap(ek1), where ek1 is the encapsulation key Bob sent in the prior round (see
the insert on page 20 for the initial round). Then, Alice updates K1 by (K2, ck2,1)←$KDF(K1,K′

1).
Alice finally sends to Bob the ciphertext ct1 along with a newly generated encapsulation key ek2 for
Bob to use in the next round. In the next round, Bob first decrypts ct1 as in process 4 and retrieves
the same updated session key K2 and chained secret key ck2,1 as Alice. Bob then switches roles with
Alice and runs process 6 , where he further updates the session key using Alice’s ek2.

Security
The above abstraction of the interactive ratchet protocol first appeared at EUROCRYPT2019 [ACD19].
Alwen et al. provided the first complete security analysis of theDouble Ratchet protocol in amodular
fashion. As expected, the KEM‐based interactive ratchet protocol achieves the same (or even slightly
stronger) security as the DH‐based interactive ratchet protocol. We invite readers interested in the
complete security analysis of the generic Double Ratchet protocol to read the full article [ACD19].
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Figure 11: Replacing the DH‐based interactive ratchet protocol by a KEM‐based interactive ratchet
protocol. The processes labeled by red circled numbers are the modifications and those labeled by
black circled numbers remain identical to Fig. 8. The items related to the local ratchet protocol are
identical to Fig. 8 and we thus omit them for simplicity.
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3 Scalable GroupMessaging Proto-
cols

This final section focuses on secure group messaging protocols, which handle the security of
group conversations.

In §3.1, we highlight the challenges that secure messaging protocols (SMPs) face in the group
setting, in particular how security and bandwidth efficiency can have an adverse relationship.
This will motivate the search for group SMPs with advantageous trade‐offs in security and
bandwidth consumption.

In §3.2, we present four prominent group SMPs, each exploring a different corner of the design
space of group SMPs. After comparing the advantage and disadvantage of these protocols,
we present the technical details of each protocol: Sender Keys (used in WhatsApp, §3.3),
Pairwise Channels (used in Signal, §3.4), TreeKEM (used in MLS, §3.5) and Chained CmPKE
(proposed by PQShield, §3.6).

3.1 Introduction
In §2, we demonstrated the feasibility and practicality of (post‐quantum) secure messaging in the
two‐party setting. While constructing a (post‐quantum) group secure messaging is feasible based on
a two‐party secure messaging, the resulting protocol will quickly become impractical as the number
of group members grows.

To provide some reference on the size of a group, secure groupmessaging applications such as Signal,
WhatsApp, and Line support group members ranging from 50 to 1,000. The almost finalized IETF
draft standard for secure messaging, Message Layer Security (MLS) [OBR+21, BBM+22], aims to
scale to groups as large as 50,000 members, typically including many users using multiple devices.
Note that while Telegram supports up to 200,000 group members — an order of magnitude larger
than other applications — the group conversations are not E2E encrypted (§1.2.2, Fig. 3) and can be
read by the server.

The present section studies a scalable solution to group secure messaging. As we will see, scaling
from two parties to a large number of parties raises questions not only in terms of scalability but
also of security, and creates an interesting trade‐off.

Scalability: Bandwidth Consumption as a Key Parameter in User Experience
To see why scalability becomes a critical issue for secure group messaging, let us discuss the band‐
width consumption of amobile device. Using data from [Cab21], Fig. 12 illustrates the cost of mobile
data around the world in 2021.

In many cases, mobile data is a scarce and expensive resource. According to [Cab21], the median
cost of mobile data is on average $4.07/GB, mobile plans in 89 countries cost more than $20.00/GB,
and for expensive countries “[p]eople are often buying data packages of just a tens of megabytes at a
time [sic].” Reaching a data cap can have drastic consequences, such as blocking end‐user access to
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the mobile network or charging them a premium rate.

Secure messaging protocols can have a high toll on bandwidth consumption, especially in the post‐
quantum setting. Assuming a user sends and receives a total of 100 messages per day, the two‐party
Signal protocol would add an overhead of 32 · 100 = 3200 bytes, corresponding to the interactive
ratchet (see Fig. 8), which provides PCS. In its post‐quantum variation (Fig. 11), it would add about
42 kilobytes with the isogeny‐based scheme SIKE [JAC+20], 153 kilobytes with the lattice‐based
scheme Kyber [SAB+20], and 25 megabytes with Classic McEliece [ABC+20], which demonstrates
that the scheme can significantly impact bandwidth efficiency. In the group setting, this overhead
may be further increased by the group size N, ranging anywhere from a dozen to tens of thousands.

med ≤ $0.50
max ≤ $2.50

$0.50 ≤ med ≤ $1.00
$2.50 ≤ max ≤ $10.00

$1.00 ≤ med ≤ $5.00
$10.00 ≤ max ≤ $20.0

med ≥ $5.00
max ≥ $20.00

Figure 12: Prices of 1 GB of mobile data in the world in 2021. Methodology and detailed data are
available at [Cab21]. med and max respectively stand for the median and maximum prices reported.
A grayed out country means that the data is either missing or unreliable.

On the other hand, we expect time or latency considerations to have a minimal impact on the
experience of end users, at least for Chained CmPKE. Let us analyze Table 3. The time bottleneck is
the O(N) cost to send a healing message. For all (post‐quantum) instantiations of Chained CmPKE
proposed in [HKP+21], uploading a healing message costs less than 50KiB for groups of at most
1024 users, which, even in countries with low uploading speed12, is done in less than 0.2 seconds.
In addition, we note that healing is a transparent operation for end users, as it is performed by their
devices as a background task. As far as we know, similar computations are yet to be done for the
other SMPs.

Security: Larger GroupsMeans Higher Risk of Compromise
As the number of group members grows, so does the risk of device compromise. More than in the
two‐party setting, this motivates the need for strong mitigations against user compromises in the
group setting. Consider a secure group conversation in a group of Nmembers. As a rough estimate,
if each member has an (independent) probability ε of having their device compromised during a time
12 As of July 2021, the slowest in Afghanistan, with 2.90 Mbps [Spe21].
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unit, then the probability of compromise of at least one member grows as Ntε in time t. When
N = 100, a device compromise is 50 times more likely than in a two‐party conversation.

As discussed in §1.2.3, disappearingmessages or the removal of compromised users at the application
level can guarantee some form of security. However, to achieve cryptographic security (see FS and
PCS in §1.2.3, Fig. 4), we need to generalize secure messaging to the group setting at the protocol
level. Specifically, the Double Ratchet protocol (§2.1.3, §2.2.2) used in the two‐party setting needs
to be generalized to the group setting. Since achieving FS is relatively straightforward, this section
focuses on how to efficiently generalize the interactive ratchet, which provides PCS, to the group
setting. Indeed, the interactive ratchet is the primary source of bandwidth consumption of Double
Ratchet, and constructing an efficient interactive group ratchet will be the key to a scalable group
messaging protocol.

A Plethora of Design Choices
In the two‐party setting (§2), the efficiency difference between any reasonable SMPs was small, so
it made sense to only consider the most secure SMP (i.e., Signal). This is no longer the case in the
group setting;with moremembers in the group, simultaneously maintaining efficiency and a strong
level of security becomes a non‐trivial task. Two types of group SMPs may achieve a different level
of security while having vastly different efficiency — in such a case they are incomparable.

Ultimately, the “best” group SMP depends on the goal of the application. If the target is the highest
level of FS and PCS security, then Pairwise Channels by Signal (§3.4) is a perfect candidate. On the
other hand, if the target is to have better efficiency than Signal or be tailored for post‐quantum se‐
curity, then Chained CmPKE by PQShield (§3.6) is a good candidate. This tension between efficiency
and security will be at the heart of our technical discussions.

3.2 Comparing Representative Group SMPs
We cover four representative group SMPs: Sender Keys (used in WhatsApp), Pairwise Channels
(used in Signal), TreeKEM (used in MLS), and Chained CmPKE (proposed by PQShield). Each of
them comes with distinctive characteristics. This section provides an overview of the efficiency and
security provided by these group SMPs and summarizes their pros and cons. We refer the interested
readers to Sections 3.3 to 3.6 for the technical details of each protocol.

3.2.1 CoreMetrics to Evaluate Group SMPs
Weprovide a summary of the four protocols in Table 3. The table focuses on some of the coremetrics
used to evaluate group SMPs. Other possible metrics likemetadata hiding and a decentralized server
are outside the scope of this white paper (see §3.2.3 for a brief discussion).

▶ Message cost. This is the communication cost for a group member to send a single message to
the group. Concretely, Pairwise Channels require (N− 1) symmetric ciphertexts; Sender Keys
require a single symmetric ciphertext and signature; TreeKEM and Chained CmPKE require a
single symmetric ciphertext and optionally a single signature.

▶ Healing (and removal) cost. This is the cost for a compromised group member to become
healed. In the group setting, the group also becomes compromised when some member is
removed from the group (see insert on Page 30). The (upload) column is the amount of data
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Table 3: Comparison between representative group SMPs. N is the number of group members.

Scheme Section
Message
cost

Healing cost
(upload)

Healing cost
(download)

Healing cost
(total)

FS PCS
Type of

shared Keys

Sender Keys
(WhatsApp)

§3.3 O(1) O(N) O(1) O(N)
per group
member

Pairwise Channels
(Signal)

§3.4 O(N) O(N) O(1) O(N)
per group
member‐pair

TreeKEM
(MLS)

§3.5 O(1) O(logN)† O(logN)† O(N logN)† per group

Chained CmPKE
(by PQShield)

§3.6 O(1) O(N) O(1) O(N) per group

† : This is the optimal healing cost achieved when the tree is balanced and no blank nodes exist (see
§3.5 for more detail). In the worst case, they become O(N), O(N), and O(N2), respectively.

uploaded by a healing member, and the (download) column is the amount of data downloaded
by each of the remaining group members in case a single member performs a heal. The (total)
column is the total bandwidth consumption of a single member when every member performs
a heal, defined as 1× (upload cost)+ (N− 1)× (download cost).

▶ FS and PCS. Setting aside subtle differences, all four group SMPs achieve the same high level
of FS denoted as ( ). In contrast, there is a distinction between the level of PCS achieved
by Sender Keys and others. ( ) denotes that PCS is achieved only if all the group members
heal; put differently, all groupmembers become indirectly compromisedwhen a singlemember
gets compromised. ( ) denotes the best‐case security where PCS is achieved once all the
compromised group members heal.

▶ Type of Shared Keys. A shared key is typically viewed as a symmetric key13 used to exchange
messages securely. There are several types of shared keys we can consider:

▷ per group member. Each group member x creates a symmetric key skx and shares it to all
the other members. Each member therefore stores N symmetric keys in total. skx is used
by member x to send a message.

▷ per group member‐pair. Each pair of group members x and y share a different symmetric
key skx,y. Each member therefore stores (N− 1) symmetric keys in total. skx,y is used by
members x and y to exchange messages.

▷ per group. All groupmembers share a single symmetric key sk. All messages are exchanged
using sk.

13 The symmetric key can be a key for a symmetric encryption scheme or authenticated encryption scheme with ad‐
ditional data (AEAD). This distinction is unimportant for our explanation.
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Removing Group Members Requires Healing

Healing is required whenever a group member becomes “compromised”. One obvious compro‐
mise occurs when an external adversary compromises a group member, for example by hacking
their phone — this is the only type of compromise needing consideration in the two‐party set‐
ting. Interestingly, in the group setting, when a member is removed from a group, the resulting
group is regarded to be compromised by viewing the removed member as an internal adversary.
This is because the removed member can continue reading the encrypted conversation if the
shared key is not updated. To make matters worse, the member may share the key with the
server or state actors to broaden the scope of the compromise while giving the other members
no way to detect such rouge activity.

3.2.2 Asymptotic vs Concrete Costs
To choose the right group SMP for an intended application, it is crucial to understand their concrete
efficiency cost. The cost of sending a message is easy to compare (see the “Message cost” column
of Table 3). Pairwise Channels requires (N−1) symmetric ciphertexts, and other protocols require a
single symmetric ciphertext and possibly a single signature. If the application handles a large group
that frequently exchanges large messages, then a group SMP with an asymptotic O(1) messaging
cost could be ideal.

The healing costs are not as clear since the terms hidden in the big‐O notations differ drastically be‐
tween protocols. Table 4 summarizes the concrete healing costs of each group SMP. The first rows
of Sender Keys and Pairwise Channels denote the healing upload and download costs of the cur‐
rently deployed non‐post‐quantum secure versions. The second rows of Sender Keys and Pairwise
Channels, and TreeKEM and Chained CmPKE assess the healing upload and download costs based
on general cryptographic primitives, all of which can be instantiated efficiently in a post‐quantum
secure manner.

Notice that even though Sender Keys (PQ), Pairwise Channels (PQ), and Chained CmPKE all have the
same asymptotic O(N) healing upload costs, the concrete costs differ significantly. While Chained
CmPKE only requires uploading a single KEM encapsulation key and key‐independent part of an
(m)KEM ciphertext, the other two protocols require (N − 1) of them. This efficiency gain comes
from the use of multi‐recipient KEMs (mKEMs) explored by PQShield and academic researchers
in [KKPP20,HKP+21]. Plugging in concrete post‐quantumKEMprotocols satisfying |ĉt0| ≫ |cti|, the
healing upload cost of Chained CmPKE can be an order of magnitude smaller than Sender Keys (PQ)
and Pairwise Channels (PQ). Interestingly, even if TreeKEM has an asymptotically smaller healing up‐
load cost, the concrete upload cost of Chained CmPKE can be smaller for N ≲ 256 [HKP+21, Figs.
6 and 7] since |ĉt0| ≫ |cti|. This illustrates the importance of comparing the concrete efficiency of
the protocols.
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Table 4: Concrete healing cost of representative group SMPs. The terms ek, ĉt0, cti, sig, and sct
stand for encapsulation key, key‐independent part of a (m)KEM ciphertext, key‐dependent part of
a (m)KEM ciphertext, signature, and symmetric ciphertext, respectively. See §3.6 for more details
on mKEMs. Informally, a standard KEM ciphertext can be decomposed as ct = (ĉt0, cti), where ĉt0
(resp. cti) is independent (resp. dependent) of the member’s encapsulation key.

Scheme
Upload Download

ek ĉt0 cti sig sct ek ĉt0 cti sig sct

Sender keys (N− 1)∗ (N− 1) 1∗ 1

Sender keys (PQ) (N− 1) (N− 1) (N− 1) (N− 1) 1 1 1 1

Pairwise channels (N− 1)∗ 1∗

Pairwise channels (PQ) (N− 1) (N− 1) (N− 1) 1 1 1

TreeKEM log2(N) log2(N)† log2(N)† 1 log2(N) log2(N)† log2(N)† 1

Chained CmPKE 1 1 (N− 1) 1 1 1 1 1

∗ :More precisely, these are group elements (for example, points on elliptic curves).
† : This is the optimal healing cost for uploads and downloads achieved when the tree is balanced
and no blank nodes exist (see §3.5 for more detail). In the worst case, they become O(N).

3.2.3 Summary
We provide a summary of the four representative group SMPs to aid the selection of the “best”
protocol meeting the objective of an application.

Efficiency
In the classical setting, Sender Keys, TreeKEM, and Chained CmPKE all provide a similar level of
efficiency and outperform Pairwise Channels. In contrast, in the post‐quantum setting, Chained
CmPKE by PQShield outperforms all other group SMPs in many common scenarios. We provide
more details below.

Message Cost. Pairwise Channels require (N − 1) symmetric ciphertexts, and the other protocols
require a single symmetric ciphertext and (optionally) a single signature (see Table 3). In the classical
setting, a signature of XEdDSA [Per16] is only roughly 32 bytes, and Pairwise Channels has a no‐
ticeably larger message cost compared with the other protocols — especially when the size of the
group or the exchangedmessage content is large. However, in the post‐quantum setting, a signature
could be an order of magnitude larger, and Pairwise Channels could offer a lower message cost for
a small‐sized group. The threshold depends on the concrete choice of the signature scheme and the
size of the exchanged message.

Healing Cost. In the classical setting, all the protocols have roughly identical total healing costs
in both concrete and asymptotic terms. When there is a specific demand to minimize the upload
healing cost, TreeKEM offers the lowest cost (in the optimal case). In the post‐quantum setting,
Chained CmPKE provides the best total and download healing cost for all group sizes, which is made
possible by the efficient mKEM studied in [KKPP20,HKP+21]. Moreover, for a medium‐sized group,
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i.e., N ≲ 256, the upload healing cost of Chained CmPKE outperforms TreeKEM. More details are
provided in [HKP+21].

Security
While the currently deployed versions of Sender Keys (WhatsApp) and Pairwise Channels (Signal)
do not have post‐quantum security (PQS), they can both be upgraded to have PQS as shown in
Sections 3.3 and 3.4. Conditioning on all four group SMPs being post‐quantum secure, Pairwise
Channels offers the strongest security and Sender Keys offers the weakest security. TreeKEM and
Chained CmPKE offer trade‐offs between efficiency and security and can achieve the same security
level as Pairwise Channels when opting for security.

Concretely, all group SMPs achieve the same level of FS. However, Sender Keys achieves a slightly
lower level of PCS than the three other group SMPs (see Table 3), since the compromise of a single
member requires all group members to heal for the group to be secure again. In a large group, this
may leave the group insecure for an extended period depending on the healing schedule.

Signal’s implementation of Pairwise Channels mandates that a heal is performed whenever a group
speaker changes and offers the highest level of PCS by default. In contrast, the healing schedule of
TreeKEM and Chained CmPKE is application dependent — if we opt for security, these two protocols
become as secure as Pairwise Channels. However, we can trade security for better efficiency.

3.2.4 Roadmap of the Remaining Sections
The remaining sections explain the technical detail of the four group SMPs: Sender Keys (WhatsApp,
§3.3), Pairwise Channels (Signal, §3.4), TreeKEM (MLS, §3.5), and Chained CmPKE (by PQShield,
§3.6). Each section provides a summary of the protocol, and answers (a) how the group is initialized,
(b) how group members send messages with the shared keys, and (c) how groups can recover from
the compromise or removal of a member.

3.3 Sender Keys byWhatsApp
Summary
WhatsApp’s Sender Keys [Wha21] runs on top of the two‐user Signal protocol. The strength of this
design lies in its simplicity and smaller messaging cost compared to Signal’s Pairwise Channels. The
messaging cost is almost identical to those of TreeKEM (§3.5) and Chained CmPKE (§3.6).

The downside is that it provides noticeably weaker security guarantees amid a compromise. Unlike
in all other protocols, when a single member gets compromised, then all group members — rather
than only the compromised one — must heal to make the group secure again. Since group healing is
also requiredwhenever amember is removed (see §3.2.1), the healing cost may become an efficiency
and bandwidth bottleneck in a large active group.14

14

WhatsApp seems to restrict at the application layer the ability for a groupmember to actively heal (see [Wha21, Sec‐
tion “GroupMessages”]). Specifically, amember cannot heal unless somebody is removed from the group. Therefore,
although Sender Keys has the capability of healing after a compromise, WhatsApp itself may not. In this document,
we evaluate what can be achieved by Sender Keys.
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Initialization
We assume a secure pairwise channel is established between all group members through the two‐
party Signal protocol (see Fig. 13b) described in §2. In the initialization phase, each group member
x creates a symmetric encryption key skx called the sender key and sends it to all the other (N − 1)
members through the pairwise channel. At the end of the initializing phase, every member has N
sender keys in storage — one for each group member.

SendingMessages
To send a message msg to the group, member x does, in this order, (i) encrypt msg using skx, (ii) sign
the symmetric ciphertext, and (iii) send the (ciphertext, signature) pair to the server (see Fig. 13a).
The server then fans out this to all the group members. Each receiving member checks the validity
of the signature and then decrypts the ciphertext using the shared skx. Since the server fans out
the same content to all the members, a message can be sent to the entire group at the cost of one
signature and one symmetric ciphertext. FS is achieved by “ratcheting” the sender key skx after
encrypting a message analogous to the local ratchet protocol explained in §2.1.3.

Healing (and Removing GroupMembers)
Each group member holds the sender key sk of all other members. Therefore, compromising a single
group member exposes all sender keys. To recover from such a compromise, all members must clear
their sender keys and restart the initialization phase. Since each group member needs to send their
new sender key through N−1 pairwise channels — each one implementing the Double Ratchet pro‐
tocol — the healing upload cost (per member) isO(N) public key values. While the healing download
cost from a single member isO(1), the total download cost (per member) becomesO(N) since every
member needs to heal despite not being explicitly compromised.

With the original Double Ratchet protocol (§2.1.3), each public key value is a group element gr, which
is 32 bytes when using Curve25519 [MP16a]. With the post‐quantum variant (§2.2.2), each public
key value is an encapsulation key and a ciphertext of a KEM, the sum of which is at least 433 bytes
(see [PQS21] for detailed comparisons).

3.4 Pairwise Channels by Signal
Summary
Pairwise Channels by Signal naturally extend the two‐user Signal protocol (§2) to the group setting,
by running the two‐party Signal protocol between all possible pairs of group members (see Fig. 13b).
The strength of Pairwise Channels lies in its strong security guarantees. Concretely, the protocol
mandates each member to heal whenever they speak up — this is in contrast to other protocols
that allow members to choose the healing schedule, resulting in a trade‐off between security and
efficiency. The downside is that it has the highest messaging cost among all the protocols. Since
group members send messages independently to each other via a pairwise channel, the message
cost is O(N) rather than O(1). The message cost may become a bandwidth bottleneck for large
groups or when large messages are frequently exchanged.

Initialization
As in Sender Keys (§3.3), we assume a secure pairwise channel is established between each pair
of group members through the two‐party Signal protocol. Recalling the Double Ratchet protocol
(§2.1.3), this means each pair of group members x and y share a symmetric key skx,y. At the end of
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msg skx

msg skx

msg skx

msg skx

msg skx

msg skx
msg skx

(a) Sender Keys. Member x initially shares a sym‐
metric key kx with the other group members using
Pairwise Channels (see Fig. 13a). Any message sent
by x is encrypted under skx and subsequently signed
by x’s signing key, costing the sender O(1) in band‐
width and computation.

(b) Pairwise Channels. A separate E2EE channel
is created for each pair (i, j), hence sending an en‐
crypted message in a group of N members entails a
cost O(N) for the sender.

Figure 13: Group messaging protocols Sender Keys (WhatsApp) and Pairwise Channels (Signal).

the initializing phase, every member stores (N− 1) symmetric keys, one for each pairwise channel.

SendingMessages
To send a message msg to the group, member x encrypts msg to all members separately by indepen‐
dently executing the Double Ratchet protocol. Since the same message is encrypted under (N− 1)
different symmetric secret keys, the messaging cost is (N− 1) symmetric ciphertexts.

Healing (and Removing GroupMembers)
Since the Double Ratchet protocol (in particular the interactive ratchet) is executed every time a
sender changes, a group member is healed by default whenever it talks after receiving a message.
Moreover, by the property of the Double Ratchet protocol, when the compromised member heals,
so does the entire group. This is in sharp contrast to Sender Keys where all the members, including
the non‐compromised members, have to heal for the entire group to become secure.

Each group member runs (N−1) independent two‐party Signal protocols, so the healing upload cost
is O(N), while the healing download cost is O(1). The concrete cost of the Double Ratchet protocol
is identical to those explained for Sender Keys (see §3.3). Since healing is performed whenever the
speaker changes, the healing cost can become quite large for an active group. For instance, even in
a short period if all the N group members speak up, then the total healing download cost becomes
O(N).

3.5 TreeKEMbyMLS
Summary
MLS [OBR+21,BBM+22] is an IETF draft standard for secure messaging aiming to make the healing
cost (i.e., PCS) more scalable compared to Sender Keys and Pairwise Channels. As with other SMPs,
MLS decomposes into modular components, where TreeKEM is the core novel protocol underlying
MLS responsible for healing the group.
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The healing upload cost of TreeKEM can be as small as O(logN). TreeKEM is the only protocol we
cover that achieves a sub‐linear healing upload cost. Moreover, unlike Signal, MLS offers a granular
level of FS and PCS. While MLS can achieve the same level of security as Signal if members heal as
frequently as in Signal, the members can trade security for efficiency by healing less frequently.

On the other hand, the healing download cost is at leastO(logN) compared to theO(1) achieved by
the other protocols we cover. In some scenarios, the high download cost can outweigh the benefit
of a low upload cost. For example, when all N users heal as frequently as Signal, the total download
cost can grow as large asO(N logN), which is more thanO(N) achieved by the other protocols. Note
that the healing download and upload costs can degrade from O(logN) to O(N) when members are
frequently removed, or some members do not heal frequently enough.

The Ratchet tree and the TreeKEM invariants
The core principle of TreeKEM is to arrange group members at the leaves of a so‐called ratchet tree
which we denote as T (see Fig. 14). We recall that the root of a tree is its topmost node. The path
of a node x is the sequence of nodes connecting x to the root (including x and the root). For a visual
illustration, consider any node in Fig. 14: its path can be visualized by starting from this node and
following the arrows ( ) until reaching the root.

(a) A complete tree (b) A tree with some blank nodes

Figure 14: Two configurations of a ratchet tree for a group of N = 8 members. Terminology:
1. Solid nodes ( ) contain an encryption keypair (ek, s), blank nodes ( ) are empty.
2. ( a b ) means any user knowing the secret key of a also knows the secret key of b .

In nominal conditions, T is complete (Fig. 14a). Certain events, for example removing users, might
cause some nodes of the ratchet tree to be blank (Fig. 14b). To each solid (i.e., non‐blank) node i of
the tree is associated an asymmetric encryption keypair (eki, si).15 Blank nodes are empty. A critical
part of TreeKEM is that the so‐called TreeKEM invariant shall be satisfied at all times:

(T1) All group members know the encryption key eki of all solid nodes i.

(T2) An entity knows the decryption key of a solid node i of T if and only if: (a) this entity is a
member of the group associated with T, and (b) i is in the path of the leaf node of this member.

Since the root is in the path of all nodes, (T2) implies that an entity knows the decryption key of the
root if and only if this entity is a group member. By passing this key in a KDF, group members can
obtain a shared symmetric key, which allows them to securely exchange encrypted messages.

15 More precisely, si is the randomness used to generate an asymmetric encryption keypair (eki, dki). For simplicity,
we view si as the decryption key.
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An additional, but less important requirement, is to minimize the number of blank nodes in the
ratchet tree. The reason for that requirement is that the fewer blank nodes there are in the tree, the
more efficient the protocol will be. In the rest of this section, we explain how TreeKEM performs
common group operations (initializing a group, adding or removing members, etc.) while preserving
the TreeKEM invariant and minimizing the number of blank nodes.

Initialization
Unlike Sender Keys or Pairwise Channels, one group member — Member 1 ( ) in Fig. 15a — is
responsible for initializing the group. At the initialization, this member assigns each member to a
distinct leaf of the ratchet tree, but all nodes are initially blank except for the leaves.

We recall that the goal of all members is to preserve the TreeKEM invariants (T1) and (T2) while
minimizing the number of blank nodes. Member 1 can update (and therefore unblank) all nodes
in his path, and these are the only ones he can update since (T2) would otherwise be invalidated.
Therefore Member 1 generates new encryption keypairs for nodes 1,9,10,11.

At this point, we mention a nice optimization used by TreeKEM. Whenever the decryption key si
of a node i is updated, the decryption key sj of its parent j is obtained by passing si into a PRG:
sj := PRG(si). This implies that as soon as a group member knows the decryption key si of a freshly
updated node i, he knows the decryption keys of all nodes that are ancestors of i. In fine, it makes it
easier to enforce the invariant (T2).

1 2 3 4 5 6 7 8

11

10

9

1

(a) Initialization by Member 1 ( )

1 2 3 4 5 6 7 8

11

10

9

1

(b) Shared tree after initialization

Figure 15: Initialization of a TreeKEM tree for a group of N = 8 members. Additional terminology:
1. The number x indicates the order in which keypairs were generated.
2. Orange nodes ( ) indicate nodes being updated by the active user ( ).
3. ( x y ) indicates that the secret key of x is encrypted using the public key of y .

Let us go back to the initialization of the group, and break down what Member 1 needs to broadcast.

▶ In order to preserve the invariant (T1), Member 1 broadcasts all newly generated encryption
keys eki ( in Fig. 15a).

▶ Preserving (T2) is more involved: Member 1 broadcasts in encrypted form all the newly gen‐
erated decryption keys si ( in Fig. 15a). Each si is being encrypted only to Members j
that have i as an ancestor, for example s9 is being encrypted only to Member 2. The PRG
optimization described above reduce the necessary number of ciphertexts; for example, since
s10 = PRG(s9) and s11 = PRG(s10), Member 2 can infer s10 and s11 from the knowledge of s9.

In Fig. 15b, decryption keys si’s are encrypted directly under encryption keys of individual group
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members. As more group members perform healing, the ratchet tree will have fewer blank nodes.
This will allow to encrypt the same decryption key si to several group members simultaneously, by
encrypting it under the encryption key of a node that is a common ancestor of said group members,
who are all able to recover si thanks to the invariant (T2).

SendingMessages
When a group member sends a message msg to the group, it encrypts msg using the root secret key
as a symmetric key. We recall that thanks to (T2), the root secret key is known by group members
(and only them). In more detail, to achieve FS, the root key is first expanded into N‐symmetric keys
using a PRG, where each symmetric key ski is used by member i to send a message, and then locally
“ratcheted” analogously to Sender Keys. Since the same content is sent to all the group members,
the cost of sending a single message to the entire group is one SKE ciphertext. Unlike Sender Keys,
MLS leaves it an option for the group members to sign the ciphertext; We can cryptographically
tie the sent message to a specific group member using a signature. Otherwise, any member can
potentially send messages on behalf of another group member leaving them deniable of the fact of
sending messages.

Healing
Healing is handled similarly to the initialization process. We handle removing separately below since
it is slightly more complex than healing. Fig. 16 illustrates how healing is performed. At a high level,
the goal of healing is to arrive at a tree with no blank nodes as in Fig. 16c — this is when MLS’s
appealing O(logN) healing upload cost starts to kick in.

1 2 3 4 5 6 7 8
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(a) Initialisation (Fig. 15b) followed by healing of
Member 7.
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(b) Initialisation (Fig. 15b) followed by healing of
Member 3.
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(c) Initialisation (Fig. 15b) followed by healing of
Members 3 (Fig. 16b), 5 and 8. The tree is full.

1 2 3 4 5 6 7 8

27

26

25

24

9 21

12 20

(d) Fig. 16c followed by Member 4 removing
Member 5. The tree is no longer full.

Figure 16: Figs. 16a and 16b are two possible key updates after the initialization phase. Fig. 16d is
a key update with removal after the tree is in state Fig. 16c. See Fig. 15 for the explanation of the
symbols.

When a member heals, the goal is to preserve the TreeKEM invariants while minimizing the number
of blank nodes in the tree. Therefore, a member who wishes to heal does the following:
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1. Update the encryption keypairs of all nodes in their path;

2. Broadcast the encryption keys of all freshly updated nodes;

3. For each freshly updated node, broadcast in an encrypted form the decryption key of this node
to all members who have this node as an ancestor.

Let us discuss each step individually.

1. Minimising the number of blank nodes is good for global efficiency, however, a group member
can only update the encryption keypairs of nodes in their path; updating all of these nodes is
the best this group member can do.

2. The goal of the second step is to preserve the invariant (T1).

3. The goal of the third step is to preserve the invariant (T2). Two optimizations are applied.
First, the decryption key of an updated node may be encrypted under the encryption key of a
common ancestor node of group members instead of each member; this is made possible by
(T2). Second, since the decryption key si of each freshly updated node is passed into a PRG
to obtain the decryption key of its (freshly updated) parent node, it suffices to encrypt to each
member the decryption key of the closest node to them.

For example, if Member 7 heals (Fig. 16a), he will update the keypairs (eki, si)i∈[12:15], and broadcast
four encryption keys ( ) and as many ciphertexts ( ):(

(eki)i∈[12:15],Encek10(s15),Encek5(s14),Encek6(s14),Encek8(s13)
)

Here, an astute reader may have noticed that the efficiency and bandwidth saving depend highly
on the position of the user healing. For the same initial configuration (Fig. 15b), Member 7 needs
to send 4 encryption keys and 4 ciphertexts to heal (Fig. 16a), whereas Member 3 needs to send 4
encryption keys and 6 ciphertexts (Fig. 16b). The number of healings required to arrive at a complete
tree depends on the position of themembers’ healing. After initialization, at leastN/2membersmust
perform healing before the tree is complete Note that group members do not necessarily follow the
optimal healing schedule, in which case we may need more time and bandwidth in practice.

When we arrive at a complete tree state as in Fig. 16c, the healing upload cost becomes optimal. It
is easy to check that any group member healing with a complete tree only needs to send O(logN)
KEM encapsulation keys, O(logN) PKE ciphertexts, and one signature. This is much more efficient
than Sender Keys and Pairwise Channels that require O(N) public key values. On the other hand,
since the minimum healing download cost is identical to the minimum upload cost, MLS does not
achieve O(1) download cost as in other protocols.

Removing GroupMembers
To securely remove a group member, TreeKEM must delete all decryption keys known by the re‐
movedmember to maintain Item (T2). AssumeMember 4 removesMember 5 in a completely healed
tree (Fig. 16d). Member 4 first blanks all the nodes leading from Member 5’s node to the root. To
fill in the now empty root node, Member 4 further performs a heal. The group is now effectively
secure against the removed member since all the secret keys maintained by Member 5 are deleted
from the tree, and the updated decryption keys are sent only to the non‐removed members.

One side effect of the removing procedure is that blank nodes are reintroduced to the tree even
after Member 4 heals. Notably, even though the group is secure against the removed member, other
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members need to heal to regain the optimal healing upload cost of MLS. Even worse, when many
members are removed from the group, the tree can no longer maintain a nice binary tree structure
since the removed leaves remain blank (unless a new member is added to the empty leaves). In such
a case, it may be more efficient to reinitialize the group and rearrange the remaining group members
at the leaves of a new smaller binary tree.

Commits and Proposals

The recent iterations of TreeKEM (i.e., after version 8 onMLS [BBM+22]) follow a “propose‐and‐
commit” flow, in which members of a group may propose to add new members, remove existing
ones, or update their keys by sending proposalmessages. These proposals only take effect when
a group member initiates a new epoch by transmitting a commitmessage, which simultaneously
validates a list of indicated proposals and heals itself. Previous to this iteration, amember needed
to perform healing whenever adding or removing a member. The new iteration allows batching
all these processes until some member decides to heal — offering a better tradeoff between
efficiency and security.

3.6 Chained CmPKE by PQShield
Summary
Chained CmPKE [HKP+21] by PQShield — published by PQShield in collaboration with academic
researchers at CCS 2021 — is a significant simplification of TreeKEM by MLS. In a bird’s eye view,
Chained CmPKE is TreeKEMwith a depth‐1 N‐ary tree (i.e., a flat tree with only a root and leaf nodes)
where the KEM is replaced by an multi‐recipient KEM (mKEM).

The strength of Chained CmPKE is that it is achieving the best of Sender Keys and Pairwise Chan‐
nels. While the asymptotic healing costs are identical to Sender Keys and Pairwise Channels, it also
realizes the O(1) messaging cost of Sender Keys and the strong PCS security of Pairwise Channels.
While the concrete healing costs of Chained CmPKE, when instantiated with a DH‐based mKEM
and signature scheme, are almost identical to the vanilla Sender Keys and Pairwise Channels, the
upload costs can be a few hundred times more efficient when moving to the post‐quantum setting.

Chained CmPKE also compares very favorably to TreeKEM. In brief, unless minimizing the healing
upload cost in a large group is the critical objective, Chained CmPKE is a better choice. The healing
upload and download costs of TreeKEM are both O(logN) in the best case, while those of Chained
CmPKE are always O(N) and O(1), respectively. While TreeKEM has a better asymptotic upload
cost, Chained CmPKE behaves better for small N since the hidden constants behind the O‐notation
are much smaller. For example, in the post‐quantum regime, the concrete upload cost of Chained
CmPKE can be smaller for N ≲ 256 [HKP+21, Figs. 6 and 7].

Moreover, Chained CmPKE always has a better total healing cost. If all N group members regularly
heal, then the total healing costs is O(N) for Chained CmPKE— just like Sender Keys and Pairwise
Channels— and O(N logN) for TreeKEM.

Power of Multi-Recipient KEMs
Let us first motivate mKEM. An mKEM allows to securely send the same session key K to a group
of N members. An obvious question is: “Can’t we do that by running N KEMs in parallel?” The appeal

© PQShield Ltd | www.pqshield.com 39 of 45



of mKEM lies in the large concrete bandwidth and computation saving compared to trivially running
N KEMs in parallel, even though both solutions have a O(N) asymptotic cost. At a high level, if
a standard KEM ciphertext ct can be decomposed into an encapsulation‐key‐independent ĉt and
dependent ctek components, we can reuse ĉt for every group member since it is not directly tied to
a specific member. In case |ĉt| ≫ |ctek|, we can get a great savings.

The idea of mKEM has been around since the early 2000’s [Kur02, Sma05] — using Diffie‐Hellman,
running mKEM for N members is twice as efficient as running N KEMs for each member. At ASI‐
ACRYPT 2020 [KKPP20], we studied mKEM instantiations at a practical level using 9 post‐quantum
KEMs (which are lattice and isogeny‐based NIST candidates and CSIDH) and show that our mKEM
offers savings of at least one order of magnitude bandwidth and makes encryption time shorter by
a factor ranging from 2 to 35.

Initialization
The main idea of Chained CmPKE is to take full advantage of mKEM by sending the same secret
to all the group members. Chained CmPKE works like TreeKEM but with a flat tree structure. In
the initialization phase, some group member — Member 1 ( ) in Fig. 17a — runs mKEM to generate
the ciphertext ct = (ĉt, (cteki)i∈[2:8]), where eki is the KEM encapsulation key of Member i. Given
cti = (ĉt, cteki), each Member i can decrypt the session key K. Member 1 further generates a new
pair of KEM keys (ek1, sk1) and then signs (ĉt, ek1). Finally, it sends the mKEM ciphertext, new
encapsulation key, and signature (ct, ek1, σ) to the server.

The server then parses ct and only sends the relevant components (cti, ek1, σ) to each Member i.
Importantly, while the mKEM ciphertext ct is of size O(N), each Member i only needs to download
a part of ct, which is of size O(1). Using a “committing” mKEM [HKP+21], the group members can
authenticate the content by only checking the authenticity of ĉt, rather than the entire ct. At the
end of the initialization phase, all the members share the same session key assigned to the root node
as in Fig. 17b.

9

2 3 4 5 6 7 81

(a) Initialization by Member 1

9

1 2 3 4 5 6 7 8

(b) Shared state after initialization

Figure 17: Initialization phase of Chained CmPKE. See Fig. 15 for the explanation of the symbols.

SendingMessages
Since both Chained CmPKE and TreeKEM send messages using only the shared root secret key,
sending messages is performed identically to MLS.

Healing (and Removing GroupMembers)
Healing and removing groupmembers are significantly simple operations for Chained CmPKE thanks
to the lack of blank nodes as in TreeKEM. Notably, healing is identical to the initialization phase. Let’s
say Member 6 makes the first heal after the initialization. This is illustrated in Fig. 18a. Member 6
runs mKEM with all the other group members as the recipients, updates its KEM encapsulation key,
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signs them, and then sends it to the server. The server then dispatches the appropriate contents to
each group member. At the end of the healing, all the members share a new root secret key, and
Member 6’s state is healed.

Removing a member is performed exactly like a heal, where the only difference is that we no longer
create mKEM ciphertexts for the removed member. This is illustrated in Fig. 18b, where Member 3
removes members 7 and 8 and performs a heal afterward.

11

1 2 3 4 5 7 810

(a) Initialization (Fig. 17b) followed byMember 6
healing.

13

1 2 4 5 612

(b) Fig. 17b followed by Member 3 removing
Members 7 and 8, then healing.

Figure 18: Key update Fig. 18a and removal Fig. 18b. See Fig. 15 for the explanation of the symbols.

Applying mKEM to Sender Keys, Pairwise Channels, and TreeKEM

A natural question is if we can replace KEMs by mKEMs in other protocols to boost efficiency.
▶ For Signal’s Pairwise Channels, the idea seems difficult to apply since a group member
sends a different content to each other members.

▶ For WhatsApp’s Sender Keys, we can leverage mKEMs since a group member x sends the
same sender key skx to all the members. However, since it needs to execute the Double
Ratchet protocol to heal, the member xmust send (N−1) independent KEM encapsulation
keys. Specifically, while we can roughly cut the healing cost by half, we won’t truly benefit
from mKEM due to the cost of sending O(N) KEM encapsulation keys.

▶ ForMLS’s TreeKEM, this idea provides significant gains. Looking at Figs. 15 and 16, we can
use mKEMs instead of KEMs, whenever a group member is sending the same node secret
to more than one member. We show in [KKPP20] that we can optimize TreeKEM bymodi‐
fying the tree structure to be anm‐ary tree rather than a binary tree— this allows us to send
the same node secret to more than two users and to benefit more from using mKEMs. This
observation has been extended further in later work published at ACM CCS [AHKM21]
by using amulti‐messagemKEM.We note that in the post‐quantum regime, settingm = N
provides the best efficiency — this corresponds exactly to PQShield’s Chained CmPKE.
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(U//FOUO) FBI’s Ability to Legally Access Secure Messaging App Content and Metadata
(U//LES) As of November 2020, the FBI’s ability to legally access secure content on leading messaging applications is depicted below, including accessible information based on the applicable legal process. Return data
provided by the companies listed below, with the exception of WhatsApp, are actually logs of latent data that are provided to law enforcement in a non-real-time manner and may impact investigation due to delivery
delays.
unclassified // law enforcement sensitive

App
iMessage Line Signal Telegram Threema Viber WeChat WhatsApp Wickr

Information
accessed

Legal Pro-
cess & Ad-
ditional
Details

•Message Content:
Limited

•Subpoena: can ren-
der basic subscriber
information

•18 U.S.C.
§2709(d): can ren-
der 25 days of iMes-
sage lookups to and
from a target num-
ber1

•Pen Register: no
capability1

•Search Warrant:
can render backups
of a target device; if
target uses iCloud
backup, the encryp-
tion keys should also
be provided with con-
tent return; can also
acquire iMessages
from iCloud returns
if target has enabled
Messages in iCloud

•Message Content:
Limited*

•Suspect and/or vic-
tim’s registered infor-
mation (profile image,
display name, email
address, phone num-
ber, LINE ID, date of
registration, etc.)

•Information on usage

* Maximum of seven
days’ worth of speci-
fied users’ text chats
(Only when E2EE has
not been elected and
applied and only when
receiving an effective
warrant; however video,
picture, files, location,
phone call audio and
other such data will not
be disclosed)

•No Mes-
sage Con-
tent

•Date and
time a user
registered

•Last date
of a user’s
connectivity
to the service

•No Mes-
sage Con-
tent

•No contact
information
provided
for law en-
forcement
to pursue a
court order.
As per Tele-
gran’s pri-
vacy state-
ment, for
confirmed
terrorist in-
vectigations,
Telegram
now disclises
IP address
and phone
number to
relevant au-
thorities

•No Message
Content

•Hash of phone
number and
email address,
if provided by
user

•Push/Token, if
push service is
used

•Public Key

•Date (no time)
of Threema ID
creation

•Date (no time)
of last login

•No Message
Content

•Provides ac-
count (i.e.
phone number)
registration
data and IP
address at time
of creation

•Message His-
tory: time,
date, source
number and
destination
number

•No Message
Content

•Accepts preser-
vation letters
and subpoe-
nas, but can-
not provide
records for ac-
counts created
in China

•For non-China
accounts, they
can provide
basic informa-
tion (name,
phone number,
email, IP ad-
dress) which is
retained for as
long as the ac-
count is active

•Message Content:
Limited*

•Subpoena: can ren-
der basic subscriber
records

•Court Order: Sub-
poena return as well
as information like
blocked users

•Search Warrant: Pro-
vides address book
contacts and What-
sApp users who have
the target in their ad-
dress book contacts

•Pen Register: Sent
every 15 minutes,
provides source and
destination for each
message

* If target is using an
iPhone and iCloud
backups enabled,
iCloud returns may
contain WhatsApp
data, to include mes-
sage content

•No Message Content

•Date and time account
created

•Type of decide(s) add
installed in

•Date of last use

•Total number of mes-
sages

•Number of external IDs
(email addresses and
phone numbers) con-
nected to the account,
but not plaintext exter-
nal IDs themselves

•Avatar image

•Limited records of re-
cent changes to account
setting such as adding
or suspending a device
(does not include mes-
sage content or routing
and delivery informa-
tion)

•Wickr Version Number

Subscriber data Message Sender
Receiver Data

Device backup IP address Encryption key(s) Data/time information Registration time data User’s contacts

(U) Prepared by Science and Technology Branch and Operational Technology Division 7 January 2021

1(U//LES) Apple provided logs only identify if a lookup occurred. Apple returns include a disclaimer that a log entry between parties does not indicate a conversation took place. These query logs have also contained errors.
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