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Executive Summary

In July 2022, NIST announced the first selection of standards for post-quantum cryptography
[NIS16]. Whilst there exist a large corpus of literature on post-quantum cryptography, the field

as a whole has not yet coalesced into a fully formalized discipline. As a result, even people ac-
quainted with it may struggle to get a clear understanding of the technical principles and how they
are put into practice.

The goal of this document is to provide the reader with an understanding of the key technical
ideas used in post-quantum cryptography. As such, it is a rather technical document. However,
we focus here on the high-level principles, and try to avoid low-level details when possible. An
interesting fact is that subfields of post-quantum cryptography (lattice-based, code-based, multi-
variate, etc.) often share several techniques and design principles, even though they may work on
very different mathematical objects. We highlighted these connections when we felt they were
relevant.

The announced NIST standards are primarily based on lattice-based and hash-based cryptography,
which are only a subset of the fields discussed here. Round 4 of the NIST competition will open up
the field a little to include other families such as code-based and isogeny-based cryptography, but
the announced call for new proposals [NIS16] is designed to look for schemes from all of the fields
in this document and beyond - so it will be interesting to see all the submissions, This document
will therefore be fully updated once the candidates become known, to encompass all the latest
research in this exciting field.
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1 Classical Public-Key Cryptography

Cryptography deals with the issue of ensuring secure communications over insecure
channels, and does so via mathematical methods.

When two parties share a secret key, symmetric-key cryptography provides efficient ways
of ensuring the confidentiality (via symmetric encryption, for example AES [AESO1]) and

integrity of communications (via message authentication codes, for example

HMAC [HMAO8]).

However, these solutions are inapplicable when the parties do not share a secret key in
advance. Public-key cryptography was invented precisely to deal with these situations.

In this section, we first describe some hard problems, the building blocks upon which
public-key cryptography is based today. We then explain the key technical ideas, and show

how cryptographic protocols put them into practice. Finally, we explain how quantum

computers jeopardize the security provided by current public-key cryptography.

1.1 Hard problems

Computationally hard problems, or hard prob-
lems for short, is a broad notion encompass-
ing problems that require a significant (ide-
ally, intractable) amount of resources to be
solved. Cryptography makes a peculiar use of
hard problems; other fields often try to avoid
these problems, but cryptography uses them
as the foundation of secure schemes. This is
typically done by establishing an equivalence
between the security of a scheme and the in-
tractability of a hard problem.

Until recently, two hard problems (or variants
thereof) have been ubiquitous in public-key
cryptography: integer factorisation, and the
discrete logarithm problem.

Factorisation-related problems

The prime factorisation problem is one of
the simplest, and probably best-known, hard
problems in cryptography.

The prime factorisation problem

Let p and q be two prime integers and
N = p x g. Given N, find p and q.

Whether this problem is actually hard (with
the computational power currently available)
depends on the set from which p and g are
picked. For actual cryptosystems, p and g are
picked from a set large enough so that prime
factorisation is infeasible in practice.

While a few cryptosystems [Rab79, Wil84]
rely solely on prime factorisation, many more
of them [GM82, Pai?9] rely on related prob-
lems, such as the RSA problem.

The RSA problem

Let p and q be prime integers, N = p x q,
and e and d two integers such that

dxe=1mod (p—1)x(qg—1)

Given N, e and m® mod N for a random
0 <m< N, findm.

The hardness of the RSA problem is the
assumption underlying the security of
the eponymous encryption and signa-
ture schemes by Rivest, Shamir and Adle-
man [RSA78].

The prime factorisation problem is at least as
hard as the RSA problem, however whether

© PQShield Ltd | www.pqgshield.com
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they are equivalent is still an open question.
In practice, schemes based on the RSA prob-
lem choose their parameters to make the re-
lated factorisation problem hard.

Problems related to the discrete
logarithm

Another class of hard problems heavily re-

lied upon by cryptography relates to the dis-
crete logarithm in finite cyclic groups. A finite
group is a finite set with some added algebraic
structure: for example, the set Z; of integers
modulo q is a finite group. We say that a finite
group G = (g) is cyclicif it is generated by

an element g. We first consider the discrete
logarithm problem, or DLOG.

DLOG - discrete logarithm problem

Let G = (g) be a finite cyclic group.
Given g and g9, find a.

Similarly to prime factorisation and RSA, while
some schemes rely solely on DLOG, others
rely on two related problems: DDH and CDH,
first used by Diffie and Hellman [DH76].

DDH and CDH - Diffie-Hellman prob-
lems

Let G = (g) be a finite group. Given

g, 8%, gP for a, b random:

Decision (DDH): Distinguish (g9, g%, g%°)
from a triple (3%, g%, g°) with ¢ random.
Search (CDH): Compute g%.

DLOG is at least as hard as CDH, which is at
least as hard as DDH. In other words:

DLOG > CDH > DDH.

Assessing equivalence in general is still com-
plicated; there are groups in which CDH is as
hard as DLOG, and there are groups for which
DDH is easy but CDH seems hard.

An active subfield of public-key cryptogra-
phy is elliptic-curve cryptography. An elliptic

curve is essentially the set of points (x,y) ver-
ifying a certain equation for fixed a, b, p:

y? = x4+ ax + b mod p.

Taking G to be an elliptic curve often allows
to design very compact schemes based on the
problems DLOG, CDH, DDH, etc.

1.2 Encryption, key exchange
and key encapsulation

Encryption schemes, key-exchange protocols
and key encapsulation mechanisms are three
related protocols which solve the same prob-
lem: establishing a secure communication be-
tween two parties over an insecure channel.

» A key-exchange protocol is a (possibly in-
teractive) protocol at the end of which two
parties agree on a shared symmetric key.

» A (public-key) encryption scheme is a
scheme with public and private keys,
where a public key pk allows to encrypt a
message msg, and the corresponding pri-
vate key sk allows to recover msg.

» A key encapsulation mechanism (or KEM)
also has public and private keys, a public
key pk allows to encrypt a random sym-
metric key K (encapsulation), and the asso-
ciated private key sk allows to recover K
(decapsulation).

Most basic constructions achieve either en-
cryption schemes [RSA78, EIG85] or key-
exchange protocols [DH76] naturally, but
there are simple generic conversions that
transform any protocol of one type into a pro-
tocol of an other type.

Encryption

For simplicity, each time we describe a
scheme, Alice will denote the owner of the
private key sk (for decryption) and Bob the
owner of the corresponding public key pk (for
encryption).

© PQShield Ltd | www.pqgshield.com
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In an encryption scheme, Alice (Q) generates
a key pair (sk, pk), keeps the private key sk

to herself, and publicly distributes the pub-
lic key pk. Bob (@) computes a ciphertext
ctxt = Enc(pk, msg).

Knows Q A Knows

-
sk, pk ctxt (V) pk

Upon reception of ctxt, Alice applies a decryp-
tion algorithm to it and recovers the message:
msg = Dec(sk, ctxt). Alice and Bob now both
know a secret msg.

Given Enc(pk, msg), it must be hard to recover
msg, except if we know the private key sk,
which allows to invert Enc(pk, -). We have:

Dec(sk, Enc(pk, msg)) = msg.

This description is arguably very generic.
We illustrate how to apply this idea in prac-
tice with a simplified version of the RSA
cryptosystem, described hereafter. The
idea is that while exponentiating a message
(ctxt = msg® mod N) is easy, “inverting” this
operation to recover msg is hard if the RSA
problem is hard.

RSA encryption

» The private key sk is a couple (p, q) of
distinct primes and a value d;

» The public key pk is the product
N = p x g, and a value e such that

exd=1mod (p—1) x (q—1);
» To encrypt a message msg, compute:
ctxt = msg® mod N
» To decrypt ctxt, compute:

msg = ctxt! mod N

A “magic” mathematical property of d and e is
that, for any element x in Zy:

(x€)4 = x°d = x mod N.

"SHIELD

This allows Alice (who knows d) to recover
msg. Of course, this simplistic description
conceals a number of details which have
to be addressed in real applications. This
is the purpose of transforms such as RSA-
OAEP [BR95].

Diffie-Hellman key exchange

The Diffie-Hellman protocol is a key-exchange
protocol. Given a random (generating) ele-
ment g of a group G, Alice chooses a random
a, computes g% keeps a to herself and send g°
to Bob. Similarly, Bob sends some g° to Alice.
Upon reception of g?, Alice raises it to the
power of her secret exponent a, and obtains
(3)9. Bob does the same, and obtains (g?)°.

g

e —

*
Knows a , ( i Knows b
g° %

Thanks to the properties of the exponentia-
tion, both obtain the same value:

(@)P = (g")7 = g®

For someone observing the exchange, finding
g% is as hard as solving CDH, which is conjec-
tured to be hard.

This protocol verifies some nice additional
properties: it is static (Alice can reuse her
secret value a for an exchange with another
party), and non-interactive (both parties can
send their g* before receiving an answer). We
will later see that post-quantum protocols
struggle to achieve both properties at once.

Chosen-ciphertext security

Most basic encryption schemes are only
proven secure against chosen-plaintext at-
tacks (CPA), where an attacker must encrypt
honestly. In chosen-ciphertext attacks (CCA),
an attacker can craft malicious ciphertexts.
These can be mitigated by applying generic
conversions, the most famous being the
Fujisaki-Okamoto transforms [FO9%a, FO99b].

© PQShield Ltd | www.pqgshield.com
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1.3 Signatures

Digital signatures solve the same problem as
their physical counterparts: proving the au-
thenticity of a document. (sk, pk) will denote
a pair of signing and verification keys, and H a
cryptographic hash function. Alice attests the
validity of a document to Bob by appending a
digital signature sig < Sign(sk, msg) to it. sig
guarantees that Alice is the rightful author of
the document, and detects any modification.

Knows
pk

Knows
sk + pk

Q sig (B

The hash-then-sign paradigm

The Hash-then-sign paradigm is arguably the
most “intuitive” approach for building digital
signatures. The message is first hashed by a
hash function H into a challenge c. A signa-
ture is a value sig such that f(sig) = cfor
some public function f,, parameterized by

pk. fpk is a trapdoor one-way function, which
means it is easy to compute and hard to invert
(one-way), except if we know sk (the trapdoor).

With the RSA problem, this idea is easily put
in application, as described below. In practice,
executing this idea securely requires adddi-
tional tweaks described in RSA-PSS [BR98].

RSA signature

» The private key sk is a couple (p, q) of
distinct primes and a value d;

» The public key pk is the product
N = p x g, and a value e such that

exd=1mod (p—1)x(qg—1);
» To sign a message msg, compute:
sig = H(msg)“ mod N
» A signature is accepted if and only if:

H(msg) = sig® mod N

The Fiat-Shamir paradigm

The philosophy of the Fiat-Shamir

paradigm [FS87] is very different from Hash-
then-sign: it is based on identification proto-
cols. These protocols are interactive proto-
cols that allow a prover to prove its identity
to a verifier. Most of them follow a commit-
challenge-response communication flow illus-
trated in Figure 1.

commitment

c\’\’cl\\eﬂ%e
r
W
accept/reject

Figure 1: A 3-pass identification protocol

Prover Verifier

The most important phase is the response,
where the prover solves a problem dependent
on both the commitment and the challenge,
and which would be hard to solve without
their private key. The Fiat-Shamir paradigm
turns an identification protocol into a signa-
ture scheme by making the challenge a hash
of both the commitment and the message.

Of course, the resulting scheme is now non-
interactive.

Schnorr signature

» The private key sk is a value x;
» The public key pk is h = g;

» To sign a message msg:
> Commit: Select a random y, and
computeu = g;

> Challenge: Compute ¢ = H(u, msg);

> Response: z =y - cx;
The signature is sig = (u, z).

» A signature is accepted if and only if:

U= gzhH(u,msg) ]

© PQShield Ltd | www.pqgshield.com
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An illustration of this principle is the Schnorr
signature scheme [Sch90] described above,
where each of Alice’s signatures is a proof
that she knows the discrete logarithm of the
public key.

1.4 The impact of quantum
computers

Most of the cryptographic schemes based on
the prime factorisation, RSA, discrete loga-
rithm and Diffie-Hellman problems would be
assumed secure if not for quantum comput-
ers.

In 1994, Shor [Sho94] showed that these clas-
sically hard problems would be easy to solve
on a large scale quantum computer. Since
quantum computers were mostly theoretical
objects at the time, there was no immediate
impact.

However, there has been significant progress
on building these computers, driven by large
companies (Microsoft, IBM, etc.) and state ac-
tors (China, USA, EU), and the prospect of a
practical qguantum computer becomes more
tangible every year.

This has led the cryptographic community, the
industry and many standards bodies to plan a
replacement of today’s widely used public-key
cryptography by a quantum-safe alternative:
post-quantum cryptography.

Inception: 1976

Hard Prob- RSA, Factoring, CDH, DDH
lems:

Enc/KEM: (elliptic-curve) Diffie-
Hellman, RSA encryption

Signatures:  Schnorr, RSA signatures

© PQShield Ltd | www.pqgshield.com
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2 Lattice-based Cryptography

A lattice is a set generated by integer linear combinations of the columns of a matrix. Thus,
lattice-based cryptosystems and hard problems typically involve matrices. Lattice-based
cryptography is rather recent (1996) compared to the other subfields, but it has seen a

steady growth since its inception.

With a few exceptions, lattice-based cryptography started with very theoretical
constructions targeting provable security. As it stands, several schemes are proven secure
under the hardness of various lattice problems. However, not all proofs are equal, in the
sense that some proofs have a limited practical relevance [CKMS16].

Today, there exist several cryptographic constructions based on lattices. Beyond encryption
and signatures, more advanced constructions have been proposed, such as homomorphic

encryption, identity-based encryption, etc.

The efficiency of cryptographic schemes based on generic lattices is moderate. Many
schemes rely on more structured lattices, and achieve high efficiency in the process. In the
initial set of standards by NIST [NIS22], three out of the four selected schemes are based on
structured lattices: Kyber [SAB'20], Dilithium [LDK20] and Falcon [PFH " 20].

2.1 Hard problems

There is a myriad of conjectured hard prob-
lems in lattice-based cryptography. The most
common are SIS and LWE. Both work with
matrices having their entries in a finite ring R
(for example Zg or Zg[x]/(x + 1)).

SIS - short integer solution

Given A € R™™ find a short vector
v # 0 such that Av = 0.

Solving SIS without the shortness constraint is
straightforward linear algebra. However, forc-
ing the solution to be short adds a geometric
constraint which makes this problem much
harder.

Another widespread hard problem is Learning
With Errors, or LWE for short. The definition
of LWE gives cryptosystems’ designers the
freedom to choose not only R, m, n, but also
the secret distribution, error distribution, etc.
The secret and error distributions (which are
public) typically have a small support.

LWE - learning with errors

Let A € R"™™ be a uniformly random
andb = Als + e, wheres € R" and

e € R™ are vectors sampled from the
'secret’ distribution and ‘error’ distribu-

tion, respectively.

Decision: Distinguish (A, b) from val-
ues sampled uniformly.

Search: Given (A, b), find s.

This versatility is a double-edged sword.
Along with the rich algebraic structure of
LWE, it allows to build several constructions
on LWE beyond signatures and key agree-
ment, the most pre-eminent being homomor-
phic encryption, which enables secure com-
putation over encrypted data. However, this
also leaves room for cryptosystems’ designers
to unwittingly use insecure parameters.

The most prevalent flavors of LWE are stan-
dard LWE, module-LWE (or MLWE) and
ring-LWE (or RLWE). Standard LWE takes

R = Zgq, the integers modulo q. MLWE takes

© PQShield Ltd | www.pqgshield.com
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R to be some polynomial ring, for example

R = Z4[x]/(x? 4 1). RLWE is the special case
of MLWE where n = 1. MLWE and RLWE
introduce some structure which can be ex-
ploited to have more efficient schemes (faster
and more compact). However, this added
structure also means that the underlying hard-
ness assumptions are more aggressive. SIS
also exists in similar flavors.

As an illustration, RLWE with one sample
posits that:

(a,axs—+e)eR?

is hard to distinguish from uniform, where a, s,
and e are sampled from some uniform, secret
and error distributions over R, respectively.
Because of its simplicity, we will take RLWE
to illustrate many of our examples.

2.2 Keyexchange and en-
cryption

2.2.1 Encryption

RLWE encryption

» The private key contains a, s, e;
» The publickeyis (a,b =a s+ e);
» The encryption of msg is ctxt = (u,v),
with:
Uu=rx*xa-+eq

Vv=rx*xb+ey+ gw msg

where eq, e, are error vectors.

» To decrypt a ciphertext ctxt, the owner
of the private key computes:

V—UxsS,

which is equal to [§] msg plus some
noise. As the noise is small (thus con-
centrated in the low bits) and msg is
encoded in the high bits, it is easy to

recover msg.

“SHIELD

There are several approaches for building
encryption schemes using lattices. The box
“RLWE Encryption” above presents a simpli-
fied version (using RLWE) of the most com-
mon approach [LPR10, LP11]. The selected
standard Kyber [SAB"20] is based on this ap-
proach.

2.2.2 Noisy Diffie-Hellman

One could imagine a naive adaptation of the
Diffie-Hellman key-exchange using RLWE.
Here, with a being a public element:

Knows
KnOWS a*s+e
S —— y small
small s, e %u .
axs +e s,e

However, this would give only an approxi-
mately shared secret since:

axsxs' +s'xefaxsxs +sxe.

To cope with this issue, the notion of recon-
ciliation has been introduced [DXL12, Pei14].
The idea is that one of the parties sends a hint
to the other party, so that they agree on the
same shared secret. This is known as noisy
Diffie-Hellman.

Unfortunately, this approach lacks a few ad-
vantages of the classical Diffie-Hellman. It

is interactive and cannot be used with static
keys (e.g. Alice cannot use s, e twice). A more
mundane issue is the presence of a patent on
reconciliation [Din12].

2.3 Signatures

Secure digital signatures using lattices have
not been immediate to obtain. The first se-
cure proposals (for both the hash-then-sign
and Fiat-Shamir paradigms) were designed in
2008.

2.3.1 The GPV framework

Early attempts [GGH97, HHP 03] to adapt
the hash-then-sign paradigm to the lattice

© PQShield Ltd | www.pqgshield.com
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setting took the public key pk and private key
sk to be, respectively, a long basis and a short
basis of a same lattice. The signing procedure
does the following:

1. Hash the message into a point H(msg)
of the ambient space of the lattice.

2. Use sk to find a lattice point v close to
H(msg).

The verification procedure checks that v is
close to H(msg), and uses pk to check that it
is also in the lattice. As performing step 2. is
hard to do with a short basis but easy with a
long basis, it was expected that breaking this
signature scheme would not be easier in prac-
tice than solving hard lattice problems. This
idea is illustrated in Figure 2; one can see that
the signature lies at the intersection of the
lattice and of a parallelepiped generated by
the private key and centered at H(msg), which
makes it unique.

e e T

Figure 2: Hash-then-sign a la [GGH97,
HPS98]. Signatures leak the private key.

However, if step 2. is not done properly, each
signature will lie in a parallelepiped having the
form of the private key, and as such would
leak a little bit of information about its ge-
ometry. This was exploited in devastating at-
tacks [NRO6, DN12]; in which a few thousand
(msg, sig) pairs leaked enough information to
fully recover the private key.

A countermeasure was proposed by Gentry,
Peikert and Vailuntanathan in 2008 [GPV08].
The idea is to use a randomized variant of
the algorithm used in step 2. of the original

idea [GGH97,HPS98]. This randomization en-
sures that one message has several valid sig-
natures, and is done in a way which eliminates
any correlation between the secret key and
the distribution of the signatures. In addition
to thwarting the attacks of [GGH97, HPS98],
this actually makes the framework of [GPV08]
provably secure under the hardness of stan-
dard lattice problems.

Figure 3: Hash-then-sign d la [GPV08]. Sig-
natures no longer leak the private key.

The selected standard Falcon [PFH20]

is an application of the GPV framework.
This technique can also be used to build
more advanced primitives such as (hierar-
chical) identity-based encryption [GPV08,
CHKP10, DLP14], attribute-based encryp-
tion [Boy13,BGG T 14], etc.

2.3.2 Fiat-Shamir with aborts

As with their hash-then-sign counterparts,
initial attempts [HPSO1] to build lattice sig-
natures with the Fiat-Shamir paradigm were
quickly cryptanalysed [GJSS01, GS02]. Like
for hash-then-sign schemes, each signature
leaked a small part of the private key.

A provably secure mitigation was proposed by
Lyubashevsky [Lyu09]. The issue with previ-
ous attempts was that the underlying protocol
lacked the zero-knowledge property, and the
point of failure was in the response step of the
protocol. In the attacked schemes, this step
induced a distribution of the signatures corre-
lated to the private key, hence the attacks.

© PQShield Ltd | www.pqgshield.com
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This weakness did not appear for classical
Fiat-Shamir schemes.

Lyubashevsky observed that randomly abort-
ing (and starting over) the protocol, in a care-
fully chosen way, allowed to eliminate the cor-
relation of the signatures with the private key
and nullified this class of attacks. This addi-
tion enabled the zero-knowledge property,
which was the only property missing in order
to make the lattice-based schemes based on
Fiat-Shamir provably secure. This technique,
by Lyubashevsky, is called Fiat-Shamir with
Aborts.

Fiat-Shamir with aborts (using LWE)

» The private key sk is two matrices S, E
of small norm.

» The public keyis (A,T=A xS+ E).

» To sign a message msg:

> Commit: Generate small random
vectors yq, Yy, and compute the
commitmentu = A x y1 + Yy;

> Challenge: Computec =
H(u, msg);

> Response: Compute z; =y +S x
candz;, =y, +E x ¢

> Abort: With a certain probability
p(sig, sk), restart;

The signature is sig = (c, z1,z)).

» A signature is accepted if and only if:
> (z1,2p) is short;
> ¢=H(A Xxz1+2z; — T x c,msg).

One can see that this scheme is surprisingly
similar to Schnorr signatures described in Sec-
tion 1.3: the public elementa € Gisnow a
matrix A, the challenge u = g" is replaced with
u = A X yq + Yo, and the underlying hard
problem DLOG has been replaced with LWE.

We note one important addition; the abort
step is added as to avoid any leakage of the
key and make the scheme secure.

The selected standard Dilithium [LDK20] is

based on Fiat-Shamir with aborts.

Inception: 1996

Assumptions: LWE (Learning with Errors),
SIS (Short Integer Solution),

NTRU
Enc/KEM: FrodoKEM, Kyber, Saber
Signatures: Dilithium, Falcon, qTESLA

J
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3 Code-based Cryptography

Error-correcting codes usually serve to guarantee the integrity and reliability of
communication over unreliable channels, by detecting and removing errors. Code-based
cryptography uses them in a completely different way, by deliberately adding errors to the
point that removing them is hard, except for someone who knows a secret description of
the code. Since it mostly entails simple algebraic operations (Gaussian elimination,
multiplication, sometimes inversion) on finite field elements, code-based cryptography is
often amenable to fast hardware implementations.

Code-based cryptography was first introduced by McEliece [McE78] in his eponymous
encryption scheme. His original scheme remains fundamentally secure, is reasonably fast
and has short ciphertexts, but a very large public key. Many attempts have been made at
making it more efficient, but doing so in a secure manner has proven to be delicate.

Achieving secure code-based signatures has been an even more difficult task. Novel
proposals in this direction are being made, but only the test of time will determine if these
efforts are successful. Code-based schemes BIKE [ABB*20], HQC [AAB'20] and Classic
McEliece [ABC " 20] have been selected as Round 4 candidates and are still being
considered for standardization by NIST [NIS22].

3.1 Problems tion 2.1: the matrix A € R"™™M is replaced by

H € F5*", and the constraint on the norm
Code-based cryptography relies on linear of the solution is replaced by a constraint on
error-correcting codes (or codes for short). its Hamming weight. In a certain parameter
These are generated by matrices over finite regime (not used in cryptography), syndrome
fields (for simplicity, this exposition will fo- decoding is a NP-complete problem.

cus on the field F,, the integers modulo 2).

The generating matrix of a code C is often de- One can come up with variations of the syn-

drome decoding problem. One such varia-
tion is the rank syndrome decoding problem,
which replaces F, by a different field, and im-

noted G, and we often associate to it a parity-
check matrix of C, denoted by H and which

verifies G x Ht = 0.
poses a condition on the rank of the solution

instead of its Hamming weight. The rank met-

Syndrome decoding ric family of schemes [AAB*19,ABD*19] are
. based on this variation. Another popular mod-
The most common code-based problem is the ) L. . . .
ification is to impose a (quasi-)cyclic structure,

d decodi blem.
syncrome decoding probiem like schemes based on QC-MDPC codes do.

Syndrome decoding

indistinguishabilit
Given a matrix H € IFSX” and a syn- Code indistinguishability

drome s € F¥, find e € F of Hamming Another hard problem, or rather a family of
weight at most t such that H x e =s. hard problems, informally states that for a
given family C = {C;}; of codes, it is hard to
The syndrome decoding problem is very distinguish a random matrix G generating a
similar to the SIS problem described in Sec- code C = C; from a random matrix.
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At a high level, it is somewhat similar to the
EIP problem described in Section 4.1. The
similarity does not stop here; while this prob-
lem is presumed hard for some families of
codes (e.g. Goppa, QC-MDPC and LRPC
codes), many other choices (Reed-Solomon,
LDPC, etc.) have led to insecure schemes.

3.2 Encryption

The idea underlying code-based encryption
schemes is that a message will be encrypted
by adding some noise to it, and that removing
this noise is hard except if one knows a secret
description of some code.

MceEliece

McEliece encryption

» The private key contains a permutation
P, an invertible matrix S, and a matrix
G generating a linear code C capable of
correcting t errors. The algorithm for
correcting errors using G is public

» The public key is the product G = SGP.

» The encryption of a message msg is:
ctxt = msg x G+ Z,

with z a vector of Hamming weight t.

» To decrypt a ciphertext ctxt, the owner
of the private key computes:

ctxt x P71 = msg x SG +z x P~L.

Since the error vector z x P~1 has
weight t, the matrix G can be used to
decode the above value to msg x S, and
then multiplying this by S—1 yields the
plaintext msg.

\ J

A common way of using codes for encryption
comes from McEliece’s original scheme, de-

scribed above. The hardness of syndrome de-
coding and of distinguishing G from a random

“SHIELD

matrix is necessary for McEliece’s encryption
scheme to be secure.

McEliece’s original proposal has large public
keys, since these are large matrices. The use
of structured matrices allows to diminish this
size, though this automatically implies a more
aggressive hardness assumption.

Niederreiter

McEliece’s cryptosystem admits a dual ver-
sion which was proposed by Niederreiter in
1986 [Nie86]. It replaces the generator matrix
G by an associated parity check matrix H.

Niederreiter encryption

» The private key contains P, S and G as
for McEliece’s cryptosystem.

» The public key is H, = SHP, for H the
parity check matrix of C.

» The encryption of a message msg is:
ctxt = Hy x msg,

msg being encoded as an error vector
containing at most t ones.

» The decryption procedure computes:
S~ x ctxt = HP x msg,

then a syndrome decoding algorithm
followed by linear algebra is applied to
recover msg.

Another difference is that in McEliece’s
scheme, an error is added to the encoded
message, whereas here the message itself
becomes the error. Niederreiter's scheme
also provides some trade-offs in term of sizes
and speed. Security-wise, both schemes

are strictly equivalent. The Round 4 candi-
date Classic McEliece [ABCT20] is based on
Niederreiter’s scheme.
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Other approaches

Note that code-based encryption schemes
can be defined using different frameworks
than the ones described above. The Round
4 candidates BIKE [ABB*20] and HQC
[AABT20] rely on different methodologies,
for example the high-level structure of HQC
is similar to the one of the selected standard
Kyber, even if the underlying mathematical
objects are very different.

3.3 Signatures

Obtaining secure and efficient signatures from
error-correcting codes has been very hard to
achieve so far. Several attempts have failed.
We present here two secure but currently
inefficient signature schemes, and two new
proposals.

Hash-then-sign

In 2001, Courtois, Finiasz and Sendrier
[CFSO1] proposed a signature scheme based
on the Hash-then-sign paradigm. It con-

verts Niederreiter's scheme into a signature
scheme: decryption becomes the signing pro-
cedure, and encryption becomes the verifica-
tion procedure. Unfortunately, the parame-
ters of [CFS01] do not scale well, which yields
impractical parameters.

A recent construction [DST19] revisited

the [CFS01] scheme and proposed to apply
the GPV framework (see Section 2.3) to build
code-based signatures. It is provably secure
under a new code-based assumption.

Fiat-Shamir

Stern [Ste94, Ste96] and Véron [Vér96] pro-
posed identification schemes from error-
correcting codes. In this setting, the se-

cret key is a vector e, and the public key is

a random matrix H as well as the syndrome
s = H x e. The prover proves knowledge of

e in a zero-knowledge way. Unfortunately,
these protocols have soundness error be-
tween 2/3 and 1/2, so converting them into
signature schemes via the Fiat-Shamir trans-
form would require a few hundred repetitions.
This would result in a slow signing procedure
and large signatures.

A recent signature scheme, Durandal
[ABGT19], uses partially Fiat-Shamir with
aborts (see Section 2.3) in conjunction with
the rank metric. It achieves a much better
soundness than Stern-like protocols, but does
not have a full security proof.

Inception: 1978

Assumptions: Syndrome decoding, Distin-
guishing from a random code

Enc/KEM: BIKE, Classic McEliece, HQC,
NTS-KEM, ROLLO
Signatures:  CFS, Durandal, WAVE
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4 Multivariate Cryptography

Multivariate cryptography is rather old since its inception dates back to 1988, when the first
multivariate encryption scheme was proposed. It builds cryptosystems from problems
involving multivariate polynomial equations over finite fields, for example the M Q problem.

However, over the years many schemes have been broken; while this may seem paradoxical,
it is easily explained by the fact that these schemes relied on other, less secure and
sometimes implicit assumptions. This has arguably undermined the credibility of the field.

The landscape of multivariate signatures is more mature than that of their encryption
counterparts. There exist both hash-then-sign and Fiat-Shamir signatures with solid
foundations, even though their concrete security for practical parameters can still be hard
to pinpoint. As of July 2022, no multivariate scheme has been selected for standardization
by NIST [NIS22].

Multivariate hash-then-sign schemes usually have small signatures (a few hundred bytes) at

the expense of large keys. For Fiat-Shamir signatures, it is the other way around.

4.1 Hard problems

Multivariate cryptography is based on multi-
variate polynomial equations. For example:

f(x1,X2) = 33X + X3 — X3 +x3 + 1

is a multivariate polynomial (of degree 4, since
xfxz is of degree 4). Solving problems involv-
ing multivariate polynomials of degree > 1 s
conjectured hard for sufficiently large param-
eters. The variables are usually in a finite field

(for example, Z4 for some prime q).

The M QO problem

The most famous problem is M Q; it entails
working with multivariate quadratics (i.e. mul-
tivariate polynomials of degree at most two),
hence its name.

The M Q problem

Let F be a finite field. Let F(x) be
(f1(x),...,fm(x)), where each f; : F" —
F is a multivariate polynomial of degree
atmost 2inx = (xg,...,%). Lety € F™
and F be inputs to the problems below.
Decision: Is there x such that F(x) = y?
Search: Find x such that F(x) =y.

The decision version of MQ is NP-

complete [GJ79], and its search version is
NP-hard. This makes M Q an attractive op-
tion for building cryptographic schemes, but
we will see that putting this idea into practice
has been difficult to achieve.

The EIP problem

Except for Fiat-Shamir signatures, it is not
known how to build cryptographic schemes
solely on M Q. Existing schemes rely, implic-
itly or explicitly, on at least a few other prob-
lems. The most prevalent is EIP, for Extended
Isomorphism of Polynomials [DYC08].
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Extended Isomorphism of polynomials

Let C be a class of so-called quadratic
central maps (from F" to F™). Let F € C
be a central map,and S : F" — F" and
T:F™ — F™ be two affine maps.

GivenP =SoFoT,findF.

Many multivariate schemes rely on EIP, in the
sense that solving EIP implies breaking the
scheme. For most of these schemes, the per-
son who generated F knows an efficient way
of computing preimages for it. Typically, this
results in F having some special structure.

This asymmetry between F (easy to invert)
and P (hard to invert) makes it tempting to
build public-key cryptography based on EIP:
the public key would be P and the private key
would contain S, Fand T.

4.2 Encryption

The first multivariate encryption scheme, C*,
was introduced in 1988 by Matsumoto and
Imai [M188]. Like most multivariate encryp-
tiom schemes, it relies at a high level on the
ideas described in the paragraph about the
EIP problem.

Multivariate encryption d la C*

» The secret key consists of the maps
S,F and T; all shall be easy to invert,
and S, T are affine maps.

» The public key isthemapP =SoFoT,
which is expected hard to invert.

» The encryption of a message msg is:
ctxt = P(msg).
» The decryption of a ciphertext ctxt is:

T10F 10 S_l(CtXt).

At a high level, this mechanism is not too dif-
ferent from what is done in code-based en-
cryption schemes such as McEliece or Nieder-

"SHIELD

reiter:

» The central map F plays the same role as
the generator matrix G, as it allows to solve
an otherwise untractable problem;

» The affine maps S, T plays the same role
as the permutation matrix P and invertible
matrix S of McEliece, in the sense that they
hide the structure of the central map.

While it may look simple to get public-key
encryption from EIP using this blueprint, it
has been notoriously hard to obtain secure
schemes in practice. The original scheme by
Matsumoto and Imai, as well as many sub-
sequent schemes [TDTD13, PBD14, YS15],
have been broken [Pat95, PPS17, CSV17],
and only a handful of schemes remain unbro-
ken. It is fair to say that building secure and
efficient multivariate encryption schemes re-
mains open.

4.3 Signatures

Multivariate signature schemes have been
easier to obtain than encryption schemes.
There exist schemes based both on the hash-
then-sign paradigm, and the Fiat-Shamir
paradigm.

4.3.1 Hash-then-sign

The high-level construction for multivari-
ate Hash-then-sign schemes may be seen as
the “dual” of the construction for encryption
schemes, and is described in the next block.
We can see that the signing and verification
procedures mirror the decryption and encryp-
tion procedures of Section 4.2, respectively.
This is very similar to how the code-based
CFS signature mirrors Niederreiter's encryp-
tion scheme and, to a lesser extent, to how
the RSA signature scheme mirrors the RSA
encryption scheme.
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Multivariate hash-then-sign

» The secret key are the maps S,Fand T,
which are easy to invert.

» The public key isthemap P =SoFoT,
expected hard to invert.

» The signature of a message msg is:
sig =T toF 105 1oH(msg).

» The verifier accepts a signature sig only
if:
P(sig) = H(msg).

The main difference among the schemes re-
lying on this paradigm is the choice of the un-
derlying field F and of the central map F. One
of the more popular strategies is the oil and
vinegar approach. This is for example the ap-
proach chosen by LUOV [BPSV19] and Rain-
bow [DCP"19]. Another popular approach
relies on variants of hidden field equations, like
GeMSS [CFMT17].

The public key P typically consists of m
quadratic polynomials n variables over I, so
it is often large. On the other hand, each sig-
nature sig is essentially a vector in I, and as
a result signatures are often very small (a few
hundred bytes).

Unfortunately, no multivariate hash-then-sign
signature admits a security proof based on a
standard assumption.

4.3.2 Fiat-Shamirwith MO

The main idea of Fiat-Shamir signatures with
MQ is that, for some publicly known map

F : F™ — ", the secret key will be a vector
x € F™, the public key will bey = F(x) € F",
and each signature will be a zero-knowledge
proof that the signer knows x. An efficient
way to do that was proposed by Sakumoto,
Shirai and Hiwatari [SSH11]. Their key idea is
to use the polar form of F, namely:

G(x1,%2) = F(x1 +x2) — F(x1) — F(x2).

A key property of G is that it is bilinear.
[SSH11] leverage this property to split the
private key in two, effectively enabling the
construction of identification protocols based
on the M Q problem. The authors proposed
3-pass (1 commitment, 1 challenge, 1 re-
sponse) and 5-pass (2 commitments, 2 chal-
lenges, 1 response) identification protocols,
but a conversion into a signature scheme was
proposed only for the 3-pass protocol (via the
Fiat-Shamir transform).

Another step in the direction of provably
secure signatures from M Q was done by
Chen, Hiilsing, Rijneveld, Samardjiska and
Schwabe [CHR " 16]. As the signatures ob-
tained from the 3-pass protocol from [SSH11]
were too inefficient, [CHR* 16] instead
adapted the 5-pass identification protocol
so that it could be converted into a signa-
ture scheme, once again via the Fiat-Shamir
transform. The resulting scheme, MQDSS, is
proven secure under the M Q assumption.
The scheme SOFIA [CHR' 18] uses the same
ideas but with a proof against adversaries
with stronger quantum capabilities.

For such schemes, the public and secret keys
are usually very small since they are the vec-
tors x and y, respectively. However, the un-
derlying identification protocol only achieves
a soundness of about % thus the signing pro-
cedure requires to repeat this protocol several
times. As a result the signatures are rather
large (more than 30 kB).

Inception: 1988
Assumptions: MQ, EIP
Enc/KEM: -

LUQV, MQDSS, Rainbow,
GeMSS

Signatures:
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5 Signhatures from One-Way Functions

One-way functions are functions which are easy to compute, but hard to invert; for
example, the hash functions SHA-2 and SHA-3 are assumed to be one-way functions.

The idea to build signatures from one-way functions was first proposed independently by
Lamport [Lam79] and Merkle [Mer20] in 1979 (the work of Merkle was published 10 years
later). Until recently, all the signatures based on one-way functions could be seen as loosely
related to the hash-then-sign paradigm, but signatures relying on the Fiat-Shamir paradigm
were recently proposed, and their philosophy is very different.

From a security viewpoint, these signatures are very appealing. Indeed, it is proven [Rom90]
that signatures exist if and only if one-way functions exist. Consequently, in terms of
underlying hypotheses, signatures based on one-way functions are the best one could
possibly hope for. In addition, all existing constructions are provably secure.

Unfortunately, these perks come at the cost of efficiency; all existing schemes have slow
signing procedures as well as large signatures. Some of these schemes achieve higher
efficiency, but require in exchange to maintain an internal state; but this is not always
possible, as some deployment contexts preclude this possibility. However, if one accepts
these restrictions, these signatures provide strong security guarantees.

There also is one method for building an encryption scheme from minimal assumptions,

however it is extremely inefficient [Mer78], and this seems to be inherent [BM09].

5.1 Hard problems

Informally, a one-way function is a function
easy to compute but hard to invert. One can
define several hardness assumptions for one-
way functions and related notions. The most
common assumptions are preimage, second
preimage and collision resistance. Preimage
resistance of a function H essentially states
that H is hard to invert for a specified out-
put y. Second preimage resistance makes a
slightly different statement.

The preimage problem

Let H: X — Y be a function,and y € Y.
Find x € X such that H(x) =y.

The second preimage problem

Let H : X — Y be a function, and x4 € X.
Find xo # x1 such that H(x1) = H(x3).

Collision resistance states it is hard to find
two inputs that H maps to the same output.

The collision problem

Let H : X — Y be a function.
Find x1 # x2 such that H(x1) = H(x2).

Preimage vs second preimage vs
collision

It is possible to build functions which are hard
for any of these problems and easy for any
other one (with the exception that collision
resistance always implies second preimage re-
sistance). However, these examples are quite
contrived and mostly of theoretical interest.

The best classical attacks known for finding
preimages on a generic function H : {0,1}* —
{0, 1}" require about 2" operations, compared
to 2"/2 operations for finding collisions. In
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practice, there exist hash functions for which
collisions have been found, but no (second-)
preimage attack has been mounted: this in-
cludes MD5 [dB94] and SHA-1 [SBKT17].

The situation of quantum attacks is less

clear as it is a recent field. Grover's algo-
rithm [Gro96] reduces the quantum cost

of preimage search to O(2"/2). Quantum
speed-ups have been proposed for collision
as well [BHT98,CNS17], their practical appli-
cability is still being discussed.

5.2 Hash-based signatures

Hash-based signatures are based on the ob-
servation that a hash function H allows to
commit to a secret key, while hiding it. In this
perspective, the public key will be a commit-
ment of the private key.

Signing a message typically consists in re-
vealing partial information so that the verifier
can recompute the commitment and check it
against the public key. A peculiar (but useful)
property of hash-based signatures in general
is that one can recover the public key from a
valid signature and the associated message.

One-time signatures

One-time signature (toy example)

» The private key is a bitstring sk =
(skq, k).

» The public keyispk =
(HM(sky), HM(sk3)), HM denoting the
M-times iteration of H

» The signature of a message msg in
{0,...,M}is:

(sig1,sig2) = (H™3(skyq ), H"' =3 (sky)).

» The verifier accepts the signature if
and only if:

(HM=m8(sig, ), H™S(sigy)) = pk.

The scheme described in the “One-Time Sig-
nature (Toy Example)” box puts into practice
the high-level ideas described at the begin-
ning ot this section.

Without knowing sk, the only way to forge

a signature for msg is to invert H. Therefore,
this scheme is secure under the preimage
hardness of H. However, one can also show
that given signatures for two different mes-
sages msgq # msg,, one can compute a signa-
ture for any message msg, < msgz < msg,.
Therefore, this scheme is secure if it signs at
most one message. These kind of schemes are
called one-time signatures (or OTS), and this is
obviously a huge limitation.

From one-time to few-times: Merkle
trees

One-time signatures can be converted to
few-time signatures (which means that a
few messages can be signed) by using Merkle
trees [Mer90], illustrated in Figure 4.

5665506

Figure 4: A Merkle tree

In a Merkle tree, each internal node (square
nodes in Figure 4) is the hash of the concate-
nation of its children: this is illustrated by

the edges linking these nodes to their chil-
dren. For signatures, the leaves of a Merkle
tree (circular nodes in Figure 4) are the public
keys of OTS. The root of a Merkle tree (its top
node) is a commitment of all the public keys
(thus of the private keys as well).
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Merkle signature

» The private key is the set of all OTS
private keys: sk = {skooo, - - - ,Sk111};

» The public key is the root of the
Merkle tree: pk = H;

» The signer uses a leaf OTS to sign
msg, and sends the one-time signa-
ture along with nodes which allow to
recover the root of the Merkle tree.
For example, a valid signature may be:

sig = (Si8000, PKoo1, Ho1, H1) ,

where siggg is a signature of msg us-
ing skogo (the private key associated to

Pkooo)-

» The verifier uses the key-recovery
property of hash-based signatures to
compute a public key from the one-
time signature (here, he gets pkgoo
from sigpgo), and recovers the top root
of the Merkle tree from sig. For the
example given above:

H(H(H(pkooollPkoo1)|IHo1)[[H1) = H = pk.

If it succeeds, the signature is ac-
cepted. Otherwise, it means that a part
of the signature is incorrect, and it is
rejected.

The Merkle tree in Figure 4 can sign up to

8 messages, which is better than one but is
still far from perfect. Another caveat is that

it still requires to keep track of the OTS keys
used; indeed, once an OTS key is used, it can
by definition not be reused. The “bookkeep-
ing” that this method imposes on the signer is
called statefulness, and it is an risky property
that can be difficult to enforce, especially in
distributed systems.

"SHIELD

Going stateless

Several other techniques allow to improve
the efficiency and flexibility of hash-based
signatures, and so we only briefly mention
them here. Goldreich trees are a flexible vari-
ant of Merkle trees, which allow to relax the
statefulness requirement to some extent.
Stateless few-time signatures [RRO2, updated
version] also provide some extra flexibility.
Hash-based signatures can be organized in
two families:

» Stateful signatures still require to maintain
a state. However, some of them attain rea-
sonable signature sizes (less than 3 kB),
such as LMS [LM95] and XMSS [HBG 18],
which have recently been standardized by
NIST [NIS20].

» Stateless signatures manage, by increas-
ing parameters, to avoid the need for a
state management. This comes at the
cost of reduced efficiency; for example,
the SPHINCS™ scheme vyields signatures of
about 30 kB.

Both families of schemes share several com-
mon points. For example, the public key is
very small (around 64 bytes), because it is a
single hash. Also, the signing procedure en-
tails a large number of hash computations,
and is therefore rather slow. Finally, because
of the tree structure, these schemes only sup-
port a limited number of hashes; however,
this number can be made arbitrarily large by
setting the parameters adequately (SPHINCS™*
supports up to 26* messages).

We note that the stateless hash-based signa-
ture scheme SPHINCS* [HBD*20] has been
selected by NIST for standardization in July
2022 [NIS22].
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5.3 Zero-knowledge signa-
tures

In 2017, Chase et al. [CDG " 17] proposed a
novel way of using one-way functions to yield
post-quantum signature schemes. Their work
relies on the Fiat-Shamir transform, but also
on other ideas, such as secret sharing and mul-
tiparty computation.

First proposed by Shamir [Sha79] and Blak-
ley [Bla79], secret sharing consists of split-
ting a secret into shares, in a way that the se-
cret can only be retrieved by combining suf-
ficiently many shares. For example, given

a binary valueb € {0, 1}, if we splitb as

b = by @ by, where b4 is uniformly random,
then b4 or b, alone do not provide any infor-
mation about b, but knowing both allows to
recover b.

Multiparty computation (or MPC for short)
[Yao82, Yao86, GMW87], proposes solutions
to perform computation over shared data,
while preserving the purpose of secret shar-
ing (that is, many shares must be combined to
recover the secret). Multiparty computation
has found many applications, like distributed
computation, protection against side-channel
attacks, etc.

MPC-in-the-head [IKOSO7] performs an MPC
computation and reveals intermediate data
(though not enough to reveal any secret) in a
pseudorandom manner. For example, giveny,
if one wants to prove that they know x such
that H(x) = vy, they can perform an MPC-
in-the-head computation of H(x) with, say, 3
shares, and send a transcript. This will con-
vince a verifier (up to probability 1/3) that
the prover knows x. At a high level, this is not
too different from how the Fiat-Shamir trans-
form renders an identification protocol non-
interactive.

[CDG™17] builds a signature scheme based
on this idea (and others). This approach is

quite different from hash-based signatures;
these view a one-way function H as a black
box, whereas the internal description of H is
quite relevant for [CDG " 17]. As each MPC-
in-the-head transcript convinces the verifier
with probability 1/3, it needs to be repeated
several times (200 to 800 in practice), which
results in a slow signing procedure and large
signatures. The resulting scheme, however, is
as secure as the underlying function H. Pic-
nic [ZCD™17] is an application of this idea.

Inception: 1979

Assumptions: Collision or (second) preim-
age resistance of one-way
functions

Enc/KEM: -

Signatures:  XMSS, SPHINCS?*, Picnic
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6 Isogeny-based Cryptography

Isogeny-based cryptography is the youngest of the subfields of post-quantum cryptography
studied in this document, since it really started in 2006.

For key-exchange and encryption, the idea is mostly to revisit the classical elliptic curve
Diffie-Hellman and El-Gamal schemes, except that instead of working with points of elliptic
curves, the elliptic curves themselves become the objects which are manipulated, and this is
done through the use of isogenies, which are a class of maps between elliptic curves.

Signature schemes based on the Fiat-Shamir transform have been proposed recently.

For both key-establishment and signatures, this transposition has not been straightforward;
the schemes are often not as “natural” as their elliptic curve counterparts, and efficiency
issues are still being addressed at this time. While they are currently slow, these schemes

offer excellent communication costs compared to schemes of other families.

This is a recent field, so the security estimates, parameters and efficiency of schemes are
likely to evolve. The Round 4 candidate SIKE [JAC20] is based on isogenies.

6.1 Hard problems

We recall that an elliptic curve is the set of
points (x,y) that, for fixed (a, b), verify:

y2 =x3 +ax+b,

with a, b, x, y belonging to (the algebraic clo-
sure of) a finite field. Isogeny-based cryp-
tography can work on two classes of elliptic
curves, ordinary or supersingular. The sec-
ond class currently seems to provide the best
efficiency/security trade-off, and almost all
schemes use it.

The isogeny problem

For the purpose of this document, it is suffi-
cient to remember that isogenies are a spe-
cific class of maps between elliptic curves,
and that isogenous curves are curves which
are connected by an isogeny.

The isogeny problem

Given two supersingular isogenous
curves Eq, E;, compute an isogeny:

(p:E1—>E2.

At a high level, we can see that this is similar
to the discrete logarithm problem: instead of
looking for a such that g% = h, we look for an
isogeny ¢ mapping E4 to Es.

6.2 Key-exchange

The idea of using isogenies to replicate the
Diffie-Hellman protocol was first proposed
by Couveignes [Cou06], and rediscovered by
Rostovtsev and Stolbunov [RS06],

6.2.1 The Couveignes-Rostovtsev-
Stolbunov scheme (CRS)

We recall that classical Diffie-Hellman starts
with a public element g. Alice sends g%, Bob
sends g? and at the end of the key-exchange
they both have a shared secret g%. The
Couveignes-Rostovtsev-Stolbunov scheme
(or CRS) can be seen as a generalization of
this idea, and is described in the next diagram,
with the public element E at the top left, and
the shared secret E/(P, Q) at the bottom right.
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Ey -, Eyo

While classical (elliptic-curve) Diffie-Hellman
takes g to be an element of an elliptic curve E,
the CRS protocol subsitutes g with the ellip-
tic curve E, and the action of exponentiating
a point is replaced by an isogeny mapping E
to another elliptic curve. Both Alice and Bob
keep their isogenies (¢ and ) secret, but at
the end of the protocol they both share a
known secret Ey, 4.

Later, [CJS14] proposed quantum algorithms
for computing isogenies in the CRS setting. To
account for these algorithms, CRS required a
growth in parameters which made it impracti-
cal at the time.

6.2.2 SIDH

Jao and de Feo [JD11] proposed an analog of
the Diffie-Hellman key exchange over super-
singular curves.

3 o s E/(Ha)
¢Bl l%,{m(PB)@A(QB)}
E/<HB>¢A7{¢B(PA)=¢B(QA)}E/<HA’ HB>

This paradigm of key-exchange is generally
called Supersingular Isogeny Diffie-Hellman, or
SIDH. From a security perspective, this vari-
ant is somewhat incomparable to the ordinary
case proposal from [Cou06, RS06]. On one
hand, the [CJS14] algorithm does not apply in
this case. On the other hand, the adversary
has access to some additional information
compared to [Cou06, RSO6]. Therefore, the
security of this scheme depends on a differ-
ent problem: the SIDH problem.

The SIDH problem

Given two supersingular isogenous
curves Eq and E,, compute an isogeny

(p:E1—>E2,

knowing ¢ (P) and ¢(Q) for some pre-
cise P, Q (we omit the details here).

From a practical perspective, being able to
work on supersingular curves allows much
smaller parameters, which results in more
compact and more efficient schemes. The
Round 4 candidate SIKE [JAC'20] is based on
SIDH.

In July 2022, a devastating attack by Cas-
tryck and Decru [CD22] has broken the SIDH
scheme and SIKE. Crucially, it exploits the
additional information ¢(P) and ¢(Q). As of
August 2022, it is unclear whether the attack
can be mitigated.

6.2.3 Non-interactive key-exchange:

CSIDH and revisited CRS

A nice property which the original Diffie-
Hellman protocol relies on is commutativity:

(ga)b _ <gb)a _ gab.
The main issues with SIDH (somewhat ad-hoc
problem and need for an interactive proto-
col) stem from the non-commutativity of the
underlying operation. Therefore, very recent

works have tried enforcing a commutative op-
eration.

The first work, by [DKS18], revisited the CRS
scheme, which already possessed this com-
mutativity property but was impractical. The
work of [DKS18] proposed mainly algorithmic
improvements, and yields key-exchange on
ordinary curves. It is still very slow.

On the other hand, [CLM* 18] showed that,
by restricting to subsets of the elliptic curves
and of the isogenies, one could effectively
construct a commutative group action over
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supersingular curves. Combining this with the
algorithmic improvements of [DKS18] allowed
them to adapt the CRS scheme over supersin-
gular curves. The resulting scheme is called
CSIDH. It remains rather slow, but small pub-
lic key sizes make it attractive.

As a direct consequence of the commutativity
of their underlying group actions, these two
schemes are non-interactive, support static
keys and are directly protected against ac-
tive attacks (they do not require a CCA trans-
form). The first two properties are desirable
for several real-life applications, and the third
one makes the schemes faster and simpler

to implement. A caveat to both schemes (be-
sides efficiency) is that the best quantum at-
tacks are subexponential. In particular, recent
works [BS20, Pei20, CCJR20] seem to imply
that CSIDH requires much larger parameters
than initially expected.

6.3 Signatures

While the first identification schemes (which
can often be converted in signatures) have
been proposed as early as 2014 [FJP14], con-
crete signature schemes based on isogenies
have only appeared recently. One can expect
significant improvements of the schemes and
cryptanalysis in the future.

6.3.1 Early schemes

In 2017, two papers [YAJT17, GPS17] pro-
posed signature schemes based on supersin-
gular isogenies. The first scheme is in both
papers, and follows from the identification
scheme from [FJP14]. The second one, pro-
posed only in [GPS17], relied on more recent
algorithmic techniques by [KLPT14].

The idea of [GPS17] is that, given three el-
liptic curves E, Ecom, Epi and two isogenies
¢ : E = Eprand ¢ : E — Ecom, One can
use the techniques of [KLPT14] to compute

anisogeny ¢q : Ecom — Epk, which is summa-
rized below.

bo
E—— Ecom
|
K
(bsk ~ !
Epk

We now describe a simplified version of the
signature scheme from [GPS17].

GPS protocol

» The public key consists of two curves E
and Ep;

» The private key is an isogeny ¢ : E —
Epk. This is done by first choosing E
and ¢4, randomly and then computing
Epk;

» A round of the protocol is as follows:
> Commit: Choose a random isogeny
¢ and compute Ecom = ¢o(E);

> Challenge: The challenge cis O or 1.

> Response: If c = 0,thenrsp =
(Ecomad)o)- EIse, rsp = (Ecom7¢1),
where ¢4 : Ecom — Epk is computed
using [KLPT14].

Return rsp.

» The verifier accepts rsp = (Ecom, @) if
and only if either:
> ¢ = 0and @g sends E to Ecom.

> ¢ =1and @4 sends Ecom to Ep.
¢, should of course be an isogeny.

At a high level, the underlying identification
protocol resembles the well-known proof sys-
tem of [GMW86] for proving knowledge of
an isomorphism between graphs. Both proto-
cols have a soundness of %, which informally
means that an illegitimate prover may falsely
convince a verifier that he knows the secret
key, with a probability %

To reach cryptographic levels of confidence,
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between 128 and 256 repetitions are needed.
This yields rather large signatures.

6.3.2 SeaSign and CSI-FiSh

Recently, de Feo and Galbraith [FG19] have

taken advantage of the commutative group

action introduced in [CLM T 18] to propose a
shorter signature scheme.

An interesting idea of [FG19] is to minimize
soundness error by having a large number n
of curves Er()i,z composing the public key, then
using Merkle trees to prevent an explosion of
the public key size. Interestingly, the scheme
also relies on techniques first developed for
lattice-based cryptography: the identifica-
tion protocol uses the aborting techniques
from [Lyu09], and this protocol is converted
into a secure signature scheme using recent
work from [KLS18] originally targeting lattice-
based schemes. The resulting scheme is called
SeaSign. As for [GPS17], the signature con-
sists of proving the knowledge of an isogeny
between two curves.

Beullens, Kleinjung and Vercauteren [BKV19]
proposed several efficiency improvements

to SeaSign. In particular, they compute an
efficient representation of a class group (an
algebraic structure) underlying much of the
computations in SeaSign. This efficient repre-
sentation, along with other tricks, enables us
to substantially improve the efficiency of the
scheme. The resulting scheme, CSI-FiSh, is ex-
tremely compact. When optimizing for signa-
ture size, the size can be as small as 263 bytes
for 128 bits of classical security; when opti-
mizing for combined public key and signature
sizes, the total size can be as small as 1468
bytes. However, it is also currently very slow.
Note that these numbers only apply for the
parameter set CSI-FiSh-512, the security of
which is under scrutiny [BS20, Pei20, CCJR20]
and might call for updated parameters.

6.3.3 SQlsign

Very recently, De Feo, Kohel, Leroux, Petit
and Wesolowski [DKLT20] proposed a new
declination of the [GPS17] scheme. A no-
table improvement compared to previous
schemes is that the base protocol has a very
small soundness error (compared to the 1/2
in [GPS17] or 1/(n 4+ 1) in SeaSign). Conse-
quently, one single round of the protocol is
sufficient and the resulting signature scheme
is therefore extremely compact.

d)com

” Ecom

d)SkJ J{lsbchal

(brsp
Exxk —— > Echat

The principle of SQISign is illustrated above,
and explained below.

» The public key is comprised of two elliptic
curves E and Epy.
» The private key is an isogeny ¢, sending E
to Epy.
» A signature simulates a commit-challenge-
response identification protocol, where:
> The commitment is Ecom.
> The challenge E, is computed by ap-
plying an isogeny Y. to Ecom.
> The response is an isogeny ¢,,, sending
Epk to Echal'

Inception: 2006

Hard Prob-  Isogeny Problem, SIDH
lems: Problem, CSIDH Problem
Enc/KEM: SIKE, CSIDH

Signatures:  CSI-FiSh [BKV19],

SQISign [DKL20]
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