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Executive Summary
The NIST standardization process
In 2016, the National Institute of Standards and Technology (NIST) launched a open and world‐
wide effort to propose, analyze and eventually standardize post‐quantum cryptographic schemes.
The two primitives covered by this standardization process were:

▶ signature schemes;

▶ key‐establishment schemes.

In July 2022, more than 5 years after its initial call for proposals, NIST announced the first results
of its standardization process [NIS22]. NIST’s decision means that:

1. an initial selection of schemes will be standardized;

2. this initial selection will be completed in the future with additional schemes.

Selected standards
For key‐establishment, NIST has selected one unique scheme: Kyber (page 22). The mathematical
object underlying the security of Kyber is the so‐called class of structured lattices.

For signatures, NIST has selected three schemes. The primary standard is Dilithium (page 12),
whereas the secondary standards for specific applications are Falcon (page 13) and SPHINCS+

(page 14). Dilithium and Falcon are based on structured lattices, whereas SPHINCS+ is based on
hash functions (such as SHA‐2 or SHA‐3).

The next steps
Kyber, Dilithium, Falcon and SPHINCS+ will be standardized. NIST plans to deliver the first set of
specifications in 2024. Meanwhile, NIST intends to diversify its portfolio by standardizing schemes
that do not rely on structured lattices. This will be done via two processes:

1. A selection of four key‐establishment schemes will continue to be scrutinized by NIST and
the community: BIKE (page 23), Classic McEliece (page 24), HQC (page 25) and SIKE (page
26). None of these schemes rely on structured lattices.

2. NIST will open a new call for additional signature schemes, with a submission deadline ex‐
pected to be 2023. The explicit goal is to have signature schemes that do not rely on struc‐
tured lattices, and/or signature schemes with small signatures and short verification.

In both cases, the process may lead to the standardization of one or more schemes.
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1 The NIST Standardization Process
A question that may come to mind regarding standardization of post‐quantum cryptography is:

Why did NIST decide to standardize post‐quantum cryptography now
if quantum computers are not yet in practical use?

The reason is simple: standardizing and deploying new technology takes time. For example, the
hash function SHA‐2 has been standardized since 2001 to replace SHA‐1; yet the latter can still
be found in many places1, despite several practical attacks against its collision resistance [SBK+17,
LP19, LP20]. On the other hand, quantum computing is a fast‐moving field, attracting hundreds of
millions of dollars2 in yearly funding. In this context, an early standardization by NIST gives organi‐
zations more time and flexibility to carry out a smooth transition to quantum‐safe cryptography.

There are a number of standardization efforts currently underway (by ETSI in Europe, CACR in
China, etc.), but we focus on the one by NIST since it is by far the most documented and has at‐
tracted a significant amount of industrial and academic attention. NIST’s post‐quantum standard‐
ization process was announced in 2016 [NIS16], with the goal to standardize post‐quantum signa‐
ture schemes and key‐establishment schemes.

Round 1

69 candidates

Round 2

26 candidates

Round 3

15 candidates

Standards (1 KEM + 3 Sig)

Round 4 (4 KEMs)

Future call
for signatures

12/2016: Call for
proposals [NIS16]

12/2017: Dead‐
line for submissions

01/2019: Round 1
report [NIS19]

07/2020: Round 2
report [NIS20]

07/2022: Round 3
report [NIS22]

XX/20XX: Selection
of more standards?

2024: Publication
of first standards

82 submissions were filed in November 2017, of which 69 were considered “complete and proper”
as per NIST’s minimal acceptance criteria and selected as Round 1 candidates (49 for key‐establishment,
20 for signatures). In January 2019 [NIS19], NIST selected 26 schemes as Round 2 candidates (17
for key‐establishment, 9 for signatures). In July 2020 [NIS20], 15 schemes were selected as Round
3 candidates. Finally, in July 2022 [NIS22], NIST decided to:

▶ Standardize one key‐establishment scheme (more precisely a key encapsulation mechanism, or
KEM) and three signature schemes (first standards expected in 2024);

▶ Select four KEMs for further study in the so‐called Round 4;

▶ Open a future call to diversify its signature portfolio (submission deadline expected in 2023).

1 See for example The Github Blog: Highlights from Git 2.29.
2 Nature: Quantum gold rush: the private funding pouring into quantum start‐ups
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2 Signature Schemes
We first discuss signature schemes that will be standardized. In Round 1 of this process (Decem‐
ber 2017), 20 digital signature schemes were accepted [NIS17]. After a preliminary analysis by
the cryptographic community, NIST selected 9 of these 20 schemes for Round 2 of the standard‐
ization process [NIS19]. In July 2020, NIST narrowed the selection to 6 schemes [NIS20]. In July
2022, NIST announced its decision [NIS22] to select three standards:

▶ Dilithium (primary standard);

▶ Falcon (secondary standard);

▶ SPHINCS+ (secondary standard).

Dilithium and Falcon are based on hardness assumptions about structured lattices, and SPHINCS+

is based on hardness assumptions about hash functions. Although there exist code‐based or isogeny‐
based signature schemes, none are in this shortlist (because they were either eliminated at Round
1, or proposed after the submission deadline) so have not been included here. Schemes based on
multivariate polynomials were eliminated at the end of Round 3. An overview of the standard sig‐
nature schemes can be found in the figure below.

Lattices Hash‐then‐sign Falcon

Fiat‐Shamir Dilithium

Signatures One‐way
functions

Hash‐then‐sign SPHINCS+

Fiat‐Shamir Picnic

Multivariate
equations

Hash‐then‐sign Rainbow

Fiat‐Shamir GeMSS

Secondary

Primary

Secondary

Future standards

Eliminated after R3

In page 6, we briefly present the schemes selected by NIST for standardization. In addition, we
provide a comparative performance study of the 3 selected standards in pages 7 to 10. Finally, for
each scheme, one page summarizes its main properties (pages 12 to 14).
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Selected Standards andNext Steps
Primary standard: Dilithium
NIST has decided to select Dilithium (page 12) as its primary standard for signature.

This choice is thoroughly explained in [NIS20]. Dilithium and Falcon are both secure, efficient
schemes. However, Dilithium is more balanced overall: its key generation and signing procedures
are faster, it is simpler to implement and doesn’t have unusual requirements such as the need for
floating‐point arithmetic support (which Falcon does).

In addition, several embedded implementation for Dilithium have been proposed [LSG21,BNG21,
GKS21,RMJ+21,BNG22], which is a testament to its ability to be deployed in constrained environ‐
ments. For all these reasons, Dilithium has been selected as the primary standard for signatures.

Secondary standard: Falcon
In [NIS20], NIST stated that they would standardize either Dilithium or Falcon, but not both. It has
therefore been a relative surprise that both schemes have been standardized: Dilithium is selected
as a primary standard, and Falcon (page 13) is selected as a secondary standard.

NIST explained this choice in [NIS22]. Falcon has much smaller bandwidth requirements, which ac‐
cording to various third parties makes it a potentially better choice than Dilithium for specific use‐
cases such as TLS with native floating‐point support [SKD20] and V2V communications [BMTR21].

Secondary standard: SPHINCS+
SPHINCS+ (page 14) has also been selected as a secondary standard.

SPHINCS+ relies purely on assumptions based on hash functions. These assumptions are per‐
ceived as much more conservative than the structure lattice assumptions that Dilithium and Falcon
rely on. The main downside of SPHINCS+ is that its performances are much worse than for the
two other standards: for example, the signature size, verification time and signing time are respec‐
tively one, two and three orders of magnitude higher than for, say, Dilithium.

Future call for signatures
In [NIS22], NIST has announced its intent to open a new call for proposals for signatures in the
future. One of the stated goals is to diversify its portfolio, by relying on other assumptions than
structured lattices. Another potential goal is to standardize signatures with small signatures and/or
fast verification. NIST expect the deadline for submissions to be in 2023, see §5 in [NIS22] for
more details.
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Communication Costs
We now provide a detailed comparison of the communication costs of the 3 selected standards for
three security levels: NIST Level 1, 3 and 5 (conjectured at least as secure as AES‐128, AES‐192
and AES‐256, respectively). While lattice‐based schemes Dilithium and Falcon have small public
keys and small signatures, hash‐based SPHINCS+ has tiny public keys but large signatures.
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NIST level 3
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Computational Costs
We now compare the running times in cycles of the 3 selected standards, for optimized implemen‐
tations targeting x64 platforms. All numbers are extracted from the specification documents of
the schemes (which might be inaccurate) and were obtained on different platforms. Therefore,
they may not enable a completely fair comparison. To make these numbers less abstract, each
graph also contains two horizontal red lines that correspond respectively to 1 millisecond and 1
second on a microprocessor with a clock frequency of 3GHz, which is typical for microprocessors
in personal computers.

We observe a high disparity between candidates. For example, the overall fastest signature scheme
at the highest security level (Dilithium) has key generation, signing and verification procedures that
are, respectively, about 140, 1200 and 100 times faster than the overall slowest one (SPHINCS+).
Note that raw performances do not tell the full story, since SPHINCS+ relies on what appear to be
more conservative assumptions than any other signature scheme presented here.
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NIST level 3
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NIST level 5

Dilithium Falcon SPHINCS+
104

105

106

107

108

109

1ms

100ms

1.
54

·1
05

6.
31

·1
07

2.
13

·1
07

3.
45

·1
05

7.
9
·1
05

4.
36

·1
08

1.
51

·1
05

1.
68

·1
05

1.
49

·1
07

Ru
nn
in
g
tim
e
in
cy
cl
es

Keygen
Sign
Verify

© PQShield Ltd | www.pqshield.com 10 of 34



Breakdown of Each Scheme
For each signature scheme, we now provide the following information:

▶ The paradigm can be either Hash‐then‐sign or Fiat‐Shamir. Even in the same family, two
schemes based on different paradigms often end up with very different properties.

▶ The family can be either Lattices or Hash functions.

▶ The underlying hard problem(s) is specified.

▶ The symmetric primitives and the type of randomness used are specified. These are not
always important theoretically, but can have a huge impact on performance. For example,
SPHINCS+ is very dependent on the underlying symmetric primitive, and Gaussian distribu‐
tions (used in Falcon) can be hard to generate in a masked fashion.

▶ Links to the specification, the website (if any) and to related works are also provided.

▶ A short summary highlights the key facts about the scheme.

▶ Finally, a performance table is provided.
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3 Dilithium (Primary standard)
Type: Signature
Paradigm: Fiat‐Shamir
Family: Lattices
Hard Problems: Module‐LWE (Learning With Errors), Module‐SIS (Short Integer Solution)
Sym. primitives: SHAKE, AES
Randomness: Uniform, and uniform over the set Bτ of ternary vectors with L1 norm τ
Specification: [LDK+20]
Website: https://pq-crystals.org/dilithium/
RelatedWorks: [Lyu09,Lyu12,GLP12,DDLL13,BG14,KLS18,DKL+18,BP18b]

NIST’s overall assessment [NIS22]
“Dilithium is a signature scheme with high ef‐
ficiency, relatively simple implementation, a
strong theoretical security basis, and an en‐
couraging cryptanalytic history. It is an excel‐
lent choice for a broad range of cryptographic
applications and is, thus, the primary signature
algorithm selected by NIST for standardization
at this time.”

Design rationale and physical attacks
Dilithium is based on the Fiat‐Shamir with
Aborts paradigm [Lyu09]. It implements
two notable tricks: the first one, introduced
in [GLP12], divides the size of the public key
almost in half. A related trick by [BG14] re‐
duces the size of the signature by half, by
sending one ring element instead of two. It
also borrows ideas from BLISS [DDLL13].

The design of Dilithium has been heavily influ‐
enced by the numerous side‐channel attacks
to which its prececessor, BLISS, has been sub‐
jected [BHLY16,PBY17,EFGT17,BDE+18]. To
thwart these attacks, Dilithium uses uniform
distributions instead instead of BLISS’s Gaus‐
sians. A masked implementation of Dilithium
has been proposed in [MGTF19].

Underlying assumptions
Dilithium relies on the (decisional) Module‐
LWE and Module‐SIS problems [LS15]. In
addition, the security proof in the QROM
relies on a new problem called SelfTargetM‐
SIS [KLS18]. New results suggest that this
problem might not be necessary after all, see
next paragraph.

Securitymodel
In the ROM, Dilithium is claimed to be SEU-
CMA under the (decisional) Module‐LWE and
Module‐SIS problems; SEU-CMA stands for
the classical notion of Strong Existential Un‐
forgeability under Chosen‐Message Attack. In
the QROM, it is claimed to be SEU-CMA un‐
der Module‐LWE, Module‐SIS and SelfTar‐
getMSIS. New results [DFMS19, LZ19] indi‐
cate that the hypothesis SelfTargetMSIS may
not be necessary after all.

Embedded implementations
Several implementation of Dilithium on em‐
bedded devices have been proposed, for ex‐
ample on FPGAs [LSG21, BNG21, RMJ+21,
BNG22] or ARM Cortex micro‐controllers
[GKS21].

NIST
level

|SK|
(bytes)

|PK|
(bytes)

|sig|
(bytes)

KG (cycles) Sign (cycles) Verify (cycles)

2 ‐ 1312 2420 70548 194892 72633
3 ‐ 1952 3293 153856 296201 102396
5 ‐ 2592 4595 153936 344578 151066
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4 Falcon (Secondary standard)
Type: Signature
Paradigm: Hash‐then‐sign
Family: Lattices
Hard Problems: NTRU
Sym. primitives: SHAKE‐256
Randomness: Noncentered discrete Gaussians
Specification: [PFH+20]
Website: https://falcon-sign.info/
RelatedWorks: [HHP+03,GPV08,SS13,DLP14,DP16,OSHG19]

NIST’s overall assessment [NIS22]
“Falcon was chosen for standardization because
NIST has confidence in its security (under the as‐
sumption that it is correctly implemented) and
because its small bandwidth may be necessary in
certain applications.”

Design
Falcon is based on the GPV frame‐
work [GPV08] for obtaining hash‐then‐sign
schemes over lattices. As first suggested
by [SS13, DLP14], the design is instanti‐
ated over the very compact class of NTRU
lattices [HHP+03] in order to minimize the
bandwidth cost. Falcon is the Round 3 signa‐
ture with the smallest communication cost
(public key + signature).

Algorithmic optimisations
Falcon exploits the algebraic structure of cy‐
clotomic rings in order to optimize its effi‐
ciency, notably via the use of a Fast Fourier
Sampling algorithm [DP16] in the signing
procedure, and of a tower‐of‐rings algo‐
rithm [PP19] during key generation. Both al‐
gorithms yields a Õ(n)‐factor improvement
compared to previous algorithms, n being the
degree of the base ring Z[x]/(xn + 1).

Variants
A few variants of Falcon have been pro‐
posed, such as a module version, ModFal‐
con [CPS+20], or a masking‐friendly version,
Mitaka [EFG+22]. In addition, a ring signature
variant has been proposed, Raptor [LAZ19].

Implementation
Falcon uses floating‐point arithmetic (FPA),
which can make its implementation deli‐
cate on platforms that don’t support FPA
natively. In this case, FPA needs to be emu‐
lated. [OSHG19, Por19] have proposed im‐
plementations of Falcon on ARM Cortex‐M4;
both use memory‐laziness tricks in order to
reduce its memory footprint.

Physical attacks
Recently, two side‐channel attacks against
unprotected implementations of Falcon
have been proposed. The first one [KA21,
GMRR22] targets floating‐point multiplica‐
tions, the second one [GMRR22] is a variation
of the hidden parallepiped attack [NR06].

NIST
level

|SK|
(bytes)

|PK|
(bytes)

|sig|
(bytes)

KG (cycles) Sign (cycles) Verify (cycles)

1 ‐ 897 666 19872000 386678 82339
3 ‐ ‐ ‐ ‐ ‐ ‐
5 ‐ 1793 1280 63135000 789564 168498
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5 SPHINCS+ (Secondary standard)
Type: Signature
Paradigm: Hash‐then‐sign
Family: Hash functions
Hard Problems: Multi‐target second‐preimage resistance of a hash function family
Sym. primitives: SHAKE‐256, SHA‐256 or Haraka (underlying hash function)
Randomness: Uniform
Specification: [HBD+20]
Website: https://sphincs.org/
RelatedWorks: [BDH11,Hül13,BHH+15,HRS16,AE17,AE18]

NIST’s overall assessment [NIS22]
“SPHINCS+ was selected for standardization
because it provides a workable (albeit rather
large and slow) signature scheme whose security
seems quite solid and is based on an entirely dif‐
ferent set of assumptions than those of our other
signature schemes to be standardized.
The two attacks related to SHA‐256‐based pa‐
rameters claiming category 5 security will need
to be carefully considered when selecting which
parameters of SPHINCS+ to standardize.”

Design rationale and optimizations
SPHINCS+ is a stateless hash‐based signa‐
ture scheme. It follows the framework intro‐
duced in [BHH+15], which combines Merkle
trees, Goldreich trees and hash‐based few‐
times signatures (or FTS). SPHINCS+ intro‐
duces a few optimizations such as the use of
tweakable hash functions [HRS16] against
multi‐target attacks. HORST, an FTS used
in [BHH+15], has been replaced by FORS, a
more secure FTS which also provides smaller
signatures. See also [BHK+19].

Variants
SPHINCS+ admits several variants: there
are 3 security levels (128, 192 or 256) and
3 choices for the underlying building block

(SHAKE‐256, SHA‐256 or Haraka). Addi‐
tionally, there is a “small”/“fast” distinction
(smaller signatures vs faster signing), as well
as a “simple”/“robust” distrinction (simpler,
faster scheme vs more conservative security
argument). Hence there are 3×3×2×2 = 36
variants. The performance numbers provided
here are for SPHINCS+‐SHA‐256‐fast‐robust.

Security proof?
While some simple hash‐based signatures
have security reductions to standard assump‐
tions over generic hash functions, SPHINCS+

is one of the more complex schemes in this
family, and no security proof is known for it
(yet). See also [BH19].

Attacks and physical attacks
During Round 3, it was pointed out in the
NIST mailing list [aut20] that SPHINCS+ might
not reach its claimed security levels for the
so‐called NIST Level 5, due to the internal
structure of SHA‐256.
A side‐channel attack [KGB+18] has shown
how an unprotected implementation can
leak part of the private key. Similarly,
[CMP18, GKPM18] showed how to recover
the private key via fault injection.

NIST
level

|SK|
(bytes)

|PK|
(bytes)

|sig|
(bytes)

KG (cycles) Sign (cycles) Verify (cycles)

1 64 32 17088 2748026 68541826 4801338
3 96 48 35664 4063066 113484456 7552358
5 128 64 49856 21327470 435984168 14938510
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6 Key-EncapsulationMechanisms
We now discuss the key‐establishment schemes. In Round 1 of NIST’s standardization process
(December 2017), 49 submissions for key‐establishment were accepted [NIS17]. After a prelimi‐
nary analysis by the cryptographic community, NIST selected 17 of these 49 submissions for Round
2 [NIS19]. Round 3 of the standardization process [NIS20] narrowed this selection to 9 schemes.
In July 2022, NIST announced its decision [NIS22]:

▶ Kyber will be standardized;

▶ Four schemes (BIKE, Classic McEliece, HQC, SIKE) will be selected for further study during
Round 4 of the standardization process, at the end of which one or more schemes might be
standardized;

▶ NTRU is kept as a back‐up for standardization. If patent negotiations around patents related
to Kyber fail, NIST might standardize NTRU instead of Kyber.

These submissions are based on three families of hardness assumptions: codes, lattices or isoge‐
nies. Candidates based on multivariate equations were eliminated at Round 1. Some submissions
also propose an encryption scheme or a key‐exchange protocol, but all submissions propose a Key
Encapsulation Mechanism (henceforth KEM). This KEM is typically obtained by applying to a base
key‐exchange/encryption scheme a CCA transform which provides increased security guarantees
against active attackers. Thus, for simplicity we will only consider KEMs. An overview of the KEMs
can be found in the figure below.

Variants of LWE Kyber

FrodoKEM

Lattices NTRU NTRU (back‐up)

NTRU Prime

Variants of LWR Saber

KEMs Codes Goppa codes Classic
McEliece

Quasi‐cyclic
codes

BIKE

HQC

Isogenies SIKE

Future standard

Elim
inated

aft
erRound

3
M
oves

to
Round

4

In page 16, we briefly present the schemes selected by NIST for immediate standardization or fur‐
ther study. In addition, we provide a comparative performance study of all schemes in pages 17 to
20. Finally, for each scheme, one page summarizes its main properties (pages 22 to 27).
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Selected Standard andNext Steps
Primary standard: Kyber
As of the July 2022 announcement [NIS22], NIST has standardized a single KEM: Kyber (page 22).
NIST made this choice because of the solid performance profile and well‐studied underlying secu‐
rity assumptions of Kyber.

Note that four KEMs based on structured lattices (Kyber, Saber, NTRU, NTRU Prime) made it to
Round 3, and their performances and security assumptions were comparable. In the end, Kyber
has been selected due to small advantages such as (a) a faster key generation and (b) a security
assumption perceived as better understood.

Note that three patents have been publicly discussed as potentially covering Kyber: [EP2537284B1],
[US9246675B2], and [US9698986B1]. In the perspective of standardizing Kyber, NIST has en‐
tered negotiations with owners of these patents.

Selected for further study: BIKE, ClassicMcEliece, HQC, SIKE
NIST has expressed its desire to diversify its portfolio by standardizing schemes not based on
structure lattices (as is Kyber). For this reason, [NIS22] has announced that four schemes have
been selected for further study in the Round 4 of the NIST PQC standardization process:

▶ BIKE (page 23), based on quasi‐cyclic codes;

▶ Classic McEliece (page 24), based on Goppa codes;

▶ HQC (page 25), based on quasi‐cyclic codes;

▶ SIKE (page 26), based on supersingular isogenies.

The standardization process continues for these schemes. None of them is standardized at the
moment, but NIST might decide to standardize one or more of them in the future.

Back-up: NTRU
The case of NTRU (page 27) is unusual. NTRU has been eliminated in NIST’s July 2022 announce‐
ment [NIS22]. However, NIST has stated in Footnote 6 of [NIS22] that if agreements with patent
owners (see above) are not executed by the end of 2022, NIST may consider standardizing NTRU
instead of Kyber.

This indicates that NTRU is considered by NIST as a back‐up for standardization in case patent
negotiations related to Kyber are not resolved. Hence we include NTRU in this document.
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Communication Costs
The following section provides a detailed comparison of the communication costs of the 9 Round
3 KEMs for three security levels: NIST Level 1 (conjectured at least as secure as AES‐128), NIST
Level 3 (conjectured at least as secure as AES‐192) and NIST Level 5 (conjectured at least as se‐
cure as AES‐256). At the lowest security level (NIST Level 1), most schemes manage to keep their
total communication cost below 2000 bytes. In that regard, the most efficient scheme is SIKE and
the least efficient is Classic McEliece, which has very large public keys, although it manages to
have the smallest ciphertexts across all schemes.
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NIST level 3
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Computational Costs
We now compare the running times in cycles of the 6 KEMs, for optimized implementations tar‐
geting x64 platforms. All numbers are extracted from the specification documents of the schemes
(which might be inaccurate) and were obtained on different platforms. Therefore, they may not
enable a completely fair comparison. To make these numbers less abstract, each graph also con‐
tains two horizontal red lines that correspond respectively to 1 and 100 milliseconds on a micro‐
processor with a clock frequency of 3GHz, which is typical for microprocessors in personal com‐
puters.

As with signatures, there can be a large disparity between candidates. At the highest security level,
the fastest scheme overall (Kyber) is about 600 times faster than SIKE. On the other hand, SIKE is
much cheaper in terms of bandwidth.
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Breakdown of Each Scheme
For each KEM, we now provide the following information:

▶ The transform is the generic conversion used to turn an IND-CPA scheme into an IND-CCA
scheme. We recall that IND-CPA stands for Indistinguishability under Chosen Plaintext Attack,
and IND-CCA stands for Indistinguishability under Chosen Ciphertext Attack. The former is sim‐
pler to achieve, but does not guarantee resistance against an attacker that can tamper with
ciphertexts (for example in a man‐in‐the‐middle attack). Therefore, IND-CPA schemes are
usually converted to IND-CCA schemes using a CCA transform.

▶ The family can be either Error‐correcting codes, Lattices or Isogenies.

▶ The underlying hard problem is specified.

▶ The symmetric primitives and the type of randomness used are specified. These can impact
performance: in some schemes, the call to a symmetric primitive actually takes most of the
running time. The type of randomness impacts how easy it is to protect a scheme against
side‐channel attacks, for example via the masking countermeasure.

▶ Links to the specification, the website (if any) and to related works are also provided.

▶ A short summary highlights the key facts about the scheme.

▶ Finally, a performance table is provided.
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7 Kyber (Primary standard)
Type: KEM
Paradigm: Encryption
Family: Lattices
Hard Problems: Module‐LWE
Sym. primitives: SHA 3‐256/512 and SHAKE‐128/256
Randomness: Binomial
Specification: [SAB+20]
Website: https://pq-crystals.org/kyber/
RelatedWorks: [LPR10,LP11,LS15,ADPS16b,ADPS16a,BDK+18]

NIST’s overall assessment [NIS22]
“The security of Kyber has been thoroughly an‐
alyzed and is based on a strong framework of
results in lattice‐based cryptography. Kyber has
excellent performance overall in software, hard‐
ware and many hybrid settings.”

Design
Kyber follows the Lindner‐Peikert framework
[LPR10,LP11], also used by Saber , FrodoKEM
and NTRU Prime (NTRU LPRime). We give a
simplified (CPA‐secure) description below.

Key generation:
1. Sample a pseudo‐random matrix A.
2. Sample short matrices S,E.
3. Compute B = AS+ E.
4. The public key is pk = (A,B), and the pri‐
vate key is sk = S.

Encryption:
1. Sample short matrices R,E′,E′′.
2. Compute U = RA+ E′ and
V = RB+ E′′ + Encode(msg).

3. The ciphertext is ctxt = (U,V).

Decryption:
1. msg = Decode(V− US).

Module lattices
Kyber uses module lattices: it manipulates
matrices and vectors with entries inR =

Zq[x]/(x256 + 1); the dimensions of these ma‐
trices and vectors are variable. This is meant
to provide a trade‐off between efficiency and
conservatism, to make implementation sim‐
pler and to easily change security levels.

Hashing the public key
As is usual, CCA security is achieved by per‐
forming a variant of Fujisaki‐Okamoto’s
transform. Kyber also hashes the public key
as part of that process; it has been argued
[BDK+18, SAB+20] that this provides pro‐
tection against multi‐target attacks and other
useful properties.

Round 2 changes
Between the Round 1 and Round 2, Kyber has
reduced the modulus q by a factor of about
two, due to improvements in NTT techniques.
The Round 1 version of Kyber [SAB+17] also
included a technique for compressing public
keys by dropping least significant bits, which
was removed in Round 2.

NIST
level

|SK|
(bytes)

|PK|
(bytes)

|sig|
(bytes)

KG (cycles) Sign (cycles) Verify (cycles)

1 1632 800 768 33856 45200 34572
3 2400 1184 1088 52732 67624 53156
5 3168 1568 1568 73544 97324 79128
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8 BIKE (Moves to Round 4)
Type: KEM
CCA Transform: FO̸⊥ [HHK17]
Family: Error‐correcting codes (QC‐MDPC codes)
Hard Problems: Quasi‐Cyclic Syndrome Decoding and Codeword Finding problems
Sym. primitives: AES, SHA
Randomness: Uniform, fixed weight, odd weight
Specification: [ABB+20]
Website: https://bikesuite.org/
RelatedWorks: [MTSB12,BGG+17,HHK17]

NIST’s overall assessment [NIS22]
“BIKE has the most competitive performance
among the non‐lattice‐based KEMs. [...] BIKE
remains under consideration due to its overall
performance and substantially different security
assumption from the currently selected KEM.”

Design and variants
BIKE is based on QC‐MDPC (Quasi‐Cyclic
Moderate Density Parity Check) codes. This
structure provides dramatic gains in compact‐
ness and speed. BIKE initially had three vari‐
ants, presented in the above table extracted
from the Round 1 presentation of BIKE. Only
BIKE‐2 was kept in the last iteration. BIKE‐2
was the most compact of the three variants;
it also has a much slower key generation, but
this was partially addressed in [DGK20a].

The decoding algorithm
Decoding algorithms for code‐based KEMs
has been the topic of intensive research. De‐
cryption failures have been shown [GJS16] to
lead to practical attacks, hence the decryp‐
tion failure rate (DFR) must be kept negligible.
However, constant‐time decoding algorithms
with negligible DFR have been difficult to ob‐
tain. BIKE currently uses the Black‐Gray‐Flip
decoder [DGK20b].

Hardware implementation
BIKE is one of the few Round 3 candidates to
have proposed a hardware implementation
(on Artix‐7 FPGA), see: https://github.com/
Chair-for-Security-Engineering/BIKE.

NIST
level

|SK|
(bytes)

|PK|
(bytes)

|ctxt|
(bytes)

KG (cycles) Enc (cycles) Dec (cycles)

1 281 1541 1573 600000 220000 2220000
3 419 3083 3115 1780000 465000 6610000
5 580 5122 5134 ‐ ‐ ‐
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9 ClassicMcEliece (Moves to Round 4)
Type: KEM
CCA Transform: Dent [Den03], SXY [SXY18], see also [BP18a]
Family: Error‐correcting codes (Goppa codes)
Hard Problems: Syndrome Decoding, Indistinguishability of Goppa codes from random codes
Sym. primitives: SHAKE
Randomness: Uniform, fixed weight
Specification: [ABC+20]
Website: https://classic.mceliece.org
RelatedWorks: [McE78,Den03,Nie86,SXY18]

NIST’s overall assessment [NIS22]
“NIST is confident in the security of Classic
McEliece and would be comfortable standardiz‐
ing the submitted parameter sets [...]. However,
it is unclear whether Classic McEliece represents
the best option for enough applications to justify
standardizing it at this time. [...] NIST would like
feedback on specific use cases for which Classic
McEliece would be a good solution.”

Design
Despite its name, Classic McEliece is not ex‐
actly based on McEliece’s scheme [McE78],
but rather on a dual variant by Niederre‐
iter [Nie86], which is equivalent security‐wise.
One of the selling points of Classic McEliece
is its very conservative design: the original
designs by [McE78,Nie86] have been exten‐
sively studied, and Classic McEliece makes no
fundamental change to them.

Chosen-ciphertext security
Classic McEliece uses a different CCA trans‐
form than other schemes. This transform is
inspired by Dent [Den03] and Saito‐Xagawa‐
Yamakawa [SXY18]. See also [BP18a] for dis‐
cussions on the QROM security of this trans‐
form.

Size constraints
Classic McEliece has very large public keys
but very small ciphertexts. Although this may
make it unsuitable in some contexts, applica‐
tions for which ciphertext size is more impor‐
tant than key size may benefit from it. This
is argued in [HNS+20], which uses Classic
McEliece in a post‐quantum version of the
WireGuard protocol. See also [BL20] for a
protocol built around these constraints.

Hardware implementation and attacks
Hardware implementations of the core math‐
ematical elements of Classic McEliece have
been provided in [WSN18], and the specifica‐
tion provides performance numbers on Artix‐
7 and Virted‐7 FPGAs. Note that this is not a
full implementation per se (it does not include,
e.g., hashing).
The implementation of [WSN18] implements
the Berlekamp‐Massey decoder in constant‐
time to prevent timing attacks. However
[LNPS20] showed that it is still vulnerable to
an electromagnetic side‐channel attack, and
shows it is possible to recover a plaintext in a
few hundred power traces.

NIST
level

|SK|
(bytes)

|PK|
(bytes)

|ctxt|
(bytes)

KG (cycles) Enc (cycles) Dec (cycles)

1 6492 261120 128 36627388 43832 134184
3 13608 524160 188 116914656 115540 270856
5 13932 1044992 240 284468140 149080 322988
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10 HQC (Moves to Round 4)
Type: KEM
CCA Transform: Variant [HHK17] of FO
Family: Error‐correcting codes
Hard Problems: Quasi‐Cyclic Syndrome Decoding
Sym. primitives: AES, SHA
Randomness: Uniform, fixed weight
Specification: [AAB+20]
Website: http://pqc-hqc.org
RelatedWorks: [Ale03,Gab05,ABD+16,DGZ17]

NIST’s overall assessment [NIS22]
“The overall performance of HQC is acceptable,
though not optimal. [...] HQC remains under
consideration due to the rigorous security anal‐
ysis and substantially different security assump‐
tion from the currently selected KEM.”

Design
HQC stands for Hamming Quasi‐Cyclic. Just
like BIKE, HQC relies on quasi‐cyclic codes.
Its high‐level design is presented above. Lat‐
tice practitioners will recognize a design sim‐
ilar to lattice‐based schemes such as the fu‐
ture standard Kyber. While this analogy can
be useful at a very high level, the mathemati‐
cal objets used are different (codes vs lattices)
and therefore HQC relies on completely dif‐
ferent problems and algorithms.

Attacks against the BCH decoder
Implementation attacks were proposed
against the BCH decoder used in earlier ver‐
sions of HQC. In [WTBB+19], co‐authors of
HQC displayed a timing attack exploiting the
BCH decoder running time, and proposed a
constant‐time variant as a countermeasure.
[SRSWZ20] mounted a power side‐channel
against the BCH decoder. The last iteration
of HQC has replaced the BCH decoder with a
Reed‐Muller Reed‐Solomon decoder.

Adecryption failure attack
A decryption failure attack against a Round
2 parameter set of HQC has been proposed
in [GJ20]. This parameter set is not present in
the last iteration of HQC.

NIST
level

|SK|
(bytes)

|PK|
(bytes)

|ctxt|
(bytes)

KG (cycles) Enc (cycles) Dec (cycles)

1 40 2249 4481 136000 220000 384000
3 40 4522 9036 305000 501000 821000
5 40 7245 14469 545000 918000 1538000
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11 SIKE (Moves to Round 4)
Type: Key exchange and KEM
CCA Transform: Variant of [HHK17]
Family: Isogenies
Hard Problems: SIDH problem
Sym. primitives: SHAKE‐256
Randomness: Uniform
Specification: [JAC+20]
Website: https://sike.org/
RelatedWorks: [JD11,CJL+17,CLN16, JS19,CLN+20,MLRB20]

NIST’s overall assessment [NIS22]
“SIKE is an unusual candidate, as it relies on
a different hard problem than all of the other
post‐quantum cryptosystems being evaluated
by NIST. In terms of performance, it has both
advantages (small key sizes) and disadvantages
(slow running times). SIKE seems promising but
needs further study, as it is still a relatively new
scheme.”

History and design
SIKE it implements the isogeny‐based SIDH
key‐exchange [JD11]. Unlike classical Diffie‐
Hellman, it is not fully interactive. It is to be
noted that while SIKE is the KEM with the
lowest communication cost, it is one of those
with the higher computational costs.

Compressed variant
SIKE comes in two variants, a basic one,
and a second one that uses point compres‐
sion [CJL+17], which reduces the public key
size by about 41%, but multiplies the overall
running time by about a factor of two. Our
performance figures are for the variant with
point compression.

Implementations
SIKE has attracted several implementa‐
tions for embedded devices, including over
ARM processors [SLLH18, sJA19], Xilinx
Artix‐7, Virtex‐7, and Kintex UltraScale+ FP‐
GAs [KAK18, KAK+19,MLRB20] or even for
the RISC architecture [KPHS18]. Although
SIKE is slower than other candidates, recent
works consistently report running times of a
few dozens milliseconds over these platforms.

Key-recovery attack
In July 2022, Castryck and Decru published
a devastating key‐recovery attack on SIKE
[CD22]. It breaks all parameter sets in less
than 24 hours on a laptop. As of August
2022, it is unclear whether SIKE can be re‐
paired.

Other cryptanalysis
Prior to [CD22], the current best attack
against SIKE was via claw‐finding. The best
classical algorithm is due to van Oorschot
and Wiener [vW99], and the best quantum
one to Tani. Jaques and Schanck [JS19] re‐
cently showed that in reasonable computation
models, the classical attack is better than the
quantum one. See also [CLN+20] for a state‐
of‐the‐art analysis.

NIST
level

|SK|
(bytes)

|PK|
(bytes)

|ctxt|
(bytes)

KG (cycles) Enc (cycles) Dec (cycles)

1 350 197 236 10158000 15120000 11077000
3 491 274 336 26360000 37470000 29216000
5 602 335 410 40935000 63254000 46606000
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12 NTRU (Back-up)
Type: KEM (and Encryption)
CCA Transform: U ̸⊥

m [HHK17], Saito‐Xagawa‐Yamada [SXY18], SimpleKEM [BP18a]
Family: Lattices
Hard Problems: One‐Wayness under Chosen Plaintext Attacks (OW‐CPA) of the underlying

DPKE
Sym. primitives: SHAKE‐256, SHA 3‐256
Randomness: Ternary polynomials (sometimes with bounded weight)
Specification: [CDH+20]
Website: https://ntru.org/
RelatedWorks: [HPS98,Den03,HPS+17,HRSS17,Sch18]

NIST’s overall assessment [NIS22]
“One important feature of NTRU is that because
it has been around for longer, its IP situation is
more clearly understood. [..] As noted by the
submitters, NTRU may not be the fastest or
smallest among the lattice KEM finalists, and
for most applications and use cases, the perfor‐
mance would not be a problem. Nonetheless,
as NIST has selected Kyber for standardization,
NTRU will therefore not be considered for stan‐
dardization in the fourth round.”

History
NTRU has a long story as it was first proposed
20 years ago [HPS98]. Since then, the scheme
has known a few evolutions. It was the first
scheme for which decryption failure attacks (a
common caveat of many lattice‐based KEMs)
were highlighted [HNP+03], and a fix was
proposed via the NAEP transform [HSSW03].
Over the years, updated parameters were
proposed [HHHW09, HPS+17] to account
for cryptanalytic advances.

Design
NTRU is based on a variant of the eponymous
assumption. By tweaking the parameters of
the original NTRU scheme [HPS98], it be‐

comes easy to implement in constant time
and eliminates decryption failures [HNP+03],
“evaluate‐at‐1” attacks and invertibility
checks. The CCA transform used by NTRU
can be interpreted and proven in many ways,
see e.g. [HHK17,SXY18,BP18a].

Amerge of two schemes
NTRU is the merge of two Round 1 schemes:
NTRU‐HRSS‐KEM [SHRS17] and NTRUEn‐
crypt [ZCHW17]. NTRU‐HRSS‐KEM aimed
at perfect correctness and used a CCA trans‐
form inspired by Dent [Den03]. On the other
hand, NTRUEncrypt relied on the NAEP
transform [HSSW03], and proposed param‐
eters with decryption failures, parameters
inspired by a construction by Stehlé and Ste‐
infeld [SS13] and (optionally) the use of Gaus‐
sian distributions.

Experimental TLS deployments
Google [Lan18] and Cloudflare [Kwi19] have
experimentally deployed NTRU‐HRSS‐KEM
(as well as SIKE) on TLS as an effort to as‐
sess the feasibility of a post‐quantum TLS.
Conclusions can be found at [KV19]. Similar
deployment efforts were conducted by Ama‐
zon [Hop19,Wei20] on BIKE and SIKE.

NIST
level

|SK|
(bytes)

|PK|
(bytes)

|ctxt|
(bytes)

KG (cycles) Enc (cycles) Dec (cycles)

1 935 699 699 191279 61331 40026
3 1234 930 930 309216 83519 59729
5 1590 1230 1230 431667 98809 75384
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