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Maintaining a consistent database across all nodes of distributed network is a
vital but challenging task, especially in an asynchronous setting. In this docu-
ment, we propose to use homomorphic signatures to perform this task securely.
Unlike previous solutions, ours achieves high scalability, flexibility and state-

lessness. We also highlight several potential applications.

1 Introduction

The real-life motivation for this work is update propagation in distributed networks. An important
constraint imposed on these networks is asynchrony: from their very nature, distributed networks
cannot instantaneously propagate an update. They should nevertheless maintain functionality and
security in the face of asynchrony.

We study the progagation of updates in distributed networks from a security viewpoint. For sim-
plicity, we consider that one single node may send updates to the network; this node is called the
distributor (denoted D) and the other nodes are called subscribers. Our arguments seamlessly
transfer to the case of several distributors.

Distributor and subscribers share a common, regularly updated database. The distributor plays a
special role as he edicts the update policy: this includes deciding what the updates are and when
to apply them, but can also entail finer-grained policies, such as: (a) specifying distinct updates for
different groups of users, (b) specifying dependencies (or lack thereof) between distinct updates.

What is the best way to propagate an update? A naive solution with limited scalability is for the
distributor to contact directly all the subscribers in a centralized way, as illustrated by the star net-
work of Figure 1. A more scalable solution is for the distributor to send the updates to a subset

of subscribers, which will themselves transfer them to other subscribers, and so on until the up-
dates are distributed to every user in the network. The server then assumes the role of the root of
a tree, with the subscribers being the other nodes. This is illustrated in Figure 2.

Figure 1: Centralized update propagation Figure 2: Distributed update propagation
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1.1 Secure Update Propagation in Distributed Networks

Distributed updates better befit the nature of distributed systems and are scalable. However, they
raise the issue of the authenticity of updates: how can a subscriber (say C, in Figure 2) be sure that
an update was created by the distributor D and not by another subscriber (say P4 in Figure 2)?
This is informally the problem of secure update propagation (or SUP).

An obvious solution to this question is to rely on digital signatures. Just like their real world coun-
terparts, digital signatures can be verified by anyone knowing (the public key pk of) the signer, but
can be computed only by the signer (using a private key sk known only by her). In this document,
we present four solutions to SUP, all based on signature schemes. We evaluate them with respect
to three metrics: scalability, flexibility and statelessness.

Scalability

The first criterion for evaluating SUP solutions is their scalability. In an unprotected distributed
update protocol, subscribers fetch updates from the distributor or other subscribers. Each of the
secure solutions we review imposes an overhead: to authenticate the updates they receive, sub-
scribers must receive and verify signatures (which are appended to the updates). Each solution
varies by the number of signatures subscribers may receive. Depending on the solution, this num-
ber may depend on:

» The total number of updates (denoted k).

» The number of updates missed by a user (denoted m).

Flexibility

The second criterion is flexibility. As stated before, distributed networks are inherently asynchronous;
this provokes several situations which have to be handled:

» Out-of-order updates: Updates may not be received in the intended order. For example, a
subscriber may receive up;, 1 before the update up;.

» Missing updates: Updates may be lost in transit and never be received. This can be seen as an
extreme case of an out-of-order update, where an update is received infinitely late.

Other situations stem from specific needs of the network’s users. For example:

» Fine-grained update policy: The distributor may decide that a subset of users must receive
some updates, and that another subset must receive other updates. The subsets of users
may even intersect. This scenario is particularly relevant for the example of software updates
in Linux and applications updates in iOS/Android: depending on the applications installed,
users may require different updates.

We consider that a solution is flexible if is amenable to the various situations we described. Ide-
ally, it should remain fully functional and retain the same level of scalability. On the other side of
the spectrum, a solution may completely break down in one of these situations.

© PQShield Ltd | www.pqgshield.com 30of 16



Statelessness

A system is said to be stateful if it requires (for functionality or security) its parties to remember
previous events or interactions. In the contrary case, it is said to be stateless. In general, it is desir-
able for a system to be stateless rather than stateful, as the latter may complicate deployment and
implementation. For all the solutions we consider, we state whether they are stateless and, if not,
which parties are required to be stateful (distributor, subscribers, or both).

1.2 The Problem of Scalable, Flexible and Stateless SUP

Scalability, flexibility and statelessness are all desirable properties. A scalable system costs less re-
sources and enables growth instead of impeding it. Likewise, flexibility increases the applicability
of a solution by making it amenable to more use cases. Finally, stateful schenes are often undesir-
able." We therefore consider the following problem:

Can we build a scalable, flexible and stateless SUP protocol?

As it turns out, it is surprisingly challenging to achieve the three properties at the same time, and
doing so has remained an open problem until now. The naive solution (signing each update) is flex-
ible and stateless but not scalable, as we will see in Section 3. [LKMW19] presented a few scalable
solutions, but each of them suffered from statefulness and a lack of flexibility. In this document,
we introduce a new solution which is novel is two ways:

1. It is the first solution which achieves simultaneously scalability, flexibility and statelessness.
Previous solutions were either flexible and stateless, or scalable, but never realized the three
properties at once.

2. ltis the first solution which relies on (set-)homomorphic signatures. Our solution, like the pre-
vious ones, relies on hash functions and digital signatures. Some of the previous solutions used
hash functions with special properties, but all of them used classical signatures. On the other
hand, our solution relies on set-homomorphic signatures, this property is precisely what allows
our solution to simultaneously be scalable, flexible and stateless.

The next table summarizes the differences between our solution (in boldface) and the previous
ones, both in terms of the techniques used and the results achieved.

Solution Hash function  Signature Scalable? Flexible? Stateless? Section
Sign update Classical Classical x v v Sec. 3.1
Sign database Classical Classical v x x Sec. 3.2
Merkle tree Merkle tree Classical v X P Sec. 3.3
Homomorphic hashing Homomorphic  Classical v x x Sec. 3.4
Homomorphic signatures | Homomorphic Homomorphic v v v Sec. 4

, Adam Langley, cryptographer at Google: “for most environments it’s a huge foot-cannon”,
(https://www.imperialviolet.org/2013/07/18/hashsig.html).
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1.3 Use Cases
We present a few use cases for which our novel solution may be of interest.

Database updates in Facebook

In a white paper published by Facebook [LKMW19] and companion articles? , it is explained that
Facebook’s infrastructure relies on distributed update propagation. This raises scalability issues
which Facebook resolves with a solution based on homomorphic hashing (detailed in Section 3.4),
currently deployed on their servers. Our solution offers scalability, but also provides flexibility.

Applications updates in i0S/Android

The standard way to install applications in the iOS and Android operating systems is by using a
centralized service: the App Store for iOS, and Google Play for Android. Here the distributor is
the App Store/Google Play, the subscribers are mobiles devices equipped with iOS/Android and
updates are regularly published for each application.

This example highlights why a fine-grained update policy can be desirable. Indeed, each subscriber
only need updates of applications she possesses, which means that each subscriber may receive a
distinct subset of updates. Likewise, applications may be interdependent (for example, a bank may
propose two distinct yet interconnected applications to its clients) or completely independent (for
example, Wikipedia and a newspaper application), which may call for a fine-grained update policy.

Software updates in Linux

Linux distributions allow to install and update software. Similarly to iOS and Android, this can be
done in a centralized manner via a software manager. Here the distributor is the repository from
which software updates are fetched. Is is common for a device which has been offline for a few
days to require dozens of software updates: compared to non-scalable solutions, our solution may
reduce the bandwidth and computation overhead by an order of magnitude or more. In addition,
different users may install distinct software, which requires a level of flexibility which does not
seem to be met by any scalable solution described in this document, except for ours. Finally, each
software may have its own update policy. In Linux, this is made explicit through the notion of de-
pendencies: a software may specify a list of softwares that need to be installed prior to it, and the
same goes for updates. Our solution is compatible with such update policies.

1.4 Roadmap

The rest of this document is organized as follows. Section 2 presents the cryptographic tools used
and formalizes SUP. Section 3 presents the previously existing solutions: one of them is stateless
and flexible but not scalable, the other ones possess various levels of scalability but are neither
flexible nor stateless. Section 4 makes a detailed presentation of our novel design, which achieves
simultaneously scalability, flexibility and statelessness. Finally, Section 5 provides a concrete in-
stantiation of our design.

9 https://engineering.fb.com/security/homomorphic-hashing/

https://engineering.fb.com/data-infrastructure/location-aware-distribution-configuring-servers-at-scale/
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2 Preliminaries

2.1 Hash Functions

In cryptography, a hash function that maps bit strings of arbitrary size to a bit string (called a hash
or hash digest) of fixed size; it requires the important property to be a one-way function, which
means that it should be infeasible to invert in practice. Cryptographic hash functions may be seen
as the electronic equivalent of fingerprints, as they provide a concise way to guarantee the in-
tegrity of a document: even the slightest change to a bit string will completely change its hash.

Set-Homomorphism

Two of the solutions we present rely on classical hash functions with no particular property. The
solution of Section 3.3 relies on Merkle trees, which provide a convenient manner of hashing a
set; upon addition/removal/modification of an element, the hash digest can be updated in time
logarithmic in the size of the set. The solution of Sections 3.4 and 4 uses set-homomorphic hash
functions, which for the same operations allow to update the hash digest in constant time. A hash
function H is said to be set-homomorphic if for any disjoint sets S, T:

H(SUT) = H(S) + H(T).

Additional information about Merkle trees and set-homomorphic hash functions are given in Sec-
tion 3.3 and 3.4, respectively.

2.2 Signature Schemes

A signature scheme provides the digital equivalent of physical signatures. First, a party (called
the signer) conjointly generates a public key pk and a private key sk, distributing the former and
keeping the latter for himself. The private key allows the signer to compute a signature sig =
Sign(sk, msg) for any message msg during what is called the signing procedure. The public key
pk allows any recipient of a message msg sent by the signer to verify its authenticity by checking
whether Verify(pk, msg, sig) accepts sig as a valid signature of msg; however, pk does not help to
compute a signature. This replicates a feature of real-life signatures, which can be easily verified
by anyone but (ideally) only done by the legitimate signer.

Set-Homomorphism

In this document, all the solutions except one rely on classical signatures and do not require any
particular property. The last solution requires set-homomorphic signatures, which is the signature
analogue of set-homomorphic hash functions. A signature scheme is said to be set-homomorphic
if for any disjoint sets S, T and valid signatures sigg < Sign(sk, S) and sigy < Sign(sk, T), their sum
sigs + sigy is with high probability a valid signature of SU T, that is:

sigs + sigr € Sign(sk,SUT).
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3 Overview of Previous Solutions

All solutions below rely on signatures and hash functions. Solutions in Sections 3.1, 3.2 and 3.3
assume the existence of a generic hash function (say, SHA-3) but differ in how they are applied to
updates/databases. The solution in Section 3.4 relies on hash functions with specific properties.

3.1 Signing Each Update

The naive solution for SUP is for the distributor D to sign each update with a given signature scheme:
sig; < Sign(sk, up;). Each time D publishes an update, it sends (up;, sig;) to its children, who propa-
gate it as is. Each update is completely independent. This is the simplest solution, and is also quite
flexible: missing and out-of-order updates are easily handled. However, the number of signatures
and verifications is equal to the number of missed updates, so this solution has poor scalability.

X Scalable?
As each update is independent, this scales linearly in the number of (missed) updates: if a
subscriber has missed m updates, he downloads m signatures and performs m verifications.

v Flexible?
Since each update is independent, this solution is very flexible: missing or out-of-order up-
dates do no affect its functionality, and it can accommodate fine-grained update policies.

v Stateless?
As each update is self-contained, there is no need to maintain a state.

3.2 Signing the Whole Database

A downside of the method from Section 3.1 is that it does not scale well with the number of missed
updates. To mitigate this efficiency loss, a solution suggested in [LKMW19] for the distributor D

to sign the whole database: sig; < Sign(sk, D;), where D; is the state of the database after up-
dates upy, . .., up; have been applied. It is explained in [LKMW19] that the computational cost of
this solution is linear in the total number of updates. A quick workaround is to instead set sig; +
Sign(sk, h;), where hy = H(up4) and for any i > 1, h; is recursively defined as h; = H(up;||h;_1).

v Scalable?
This solution offers excellent scalability in the number of missed updates: a subscriber who
missed m updates only needs to download and verify 1 signature (along with the m updates).

% Flexible?
As each update depends on all the previous ones, this solution offers no flexibility.

X Stateless?
The distributor needs to keep track of all the updates he has published. This can be done ef-
ficiently (the state can consist of a single hash digest), but still the system requires the distrib-
utor to be stateful. Likewise, each subscriber needs to be stateful as well.
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3.3 Merkle Trees

It has been suggested in [LKMW19] to tweak the solution of Section 3.2 by relying on trees. We
show here that by carefully employing it, it enjoys a good level of scalability.

Merkle trees and their properties.

A Merkle tree (or hash tree) is a binary tree in which the value of each internal node is the hash of
the values of its children. An illustration can be found in Figure 3.

As often when tree structures are used, Merkle trees provide dramatic gains over naive hashing
for ensuring the integrity of a database. To hash a whole database, one makes each element of
the database a leaf of the Merkle tree (@ nodes in Figure 3) and takes as the hash of the database
the root of the Merkle tree (M in Figure 3). Simple alterations of the database (adding, deleting or
modifying) can be taken into account in the hash digest in time O(log t), where t denotes the total
number of elements in the database. In comparison, a naive hash would need time O(t).

o

doo ao1 dio aia

Figure 3: A Merkle tree. Edges connecting nodes mean “the parent is the hash of the two chil-
dren”. The value of agg is H(0||1), the value of bg is H(agol||ag1) = H(H(O||1)||H(2||3)), and so on.

It has been noted in [LKMW19] that in order to reach that level of efficiency, the whole Merkle
tree needs to be stored, which means storing O(t) values. Consequently, [LKMW19] has dismissed
Merkle trees as being ultimately impractical for secure update propagation. However, we note that
this O(t) storage requirement is true only if we need to perform additions AND deletions AND
modifications. If we only require additions, then one only needs to store what is called the copath
(or authentication path) of the last leaf added to the Merkle tree.® This allows to can relax the
storage requirement to O(logt).

5 We say that the path of a node is the set of its ancestors (including itself), and its co-path is the set of siblings of
each element in the path. For example, the path of the leaf 1 is {0, ago, bo}, and its copath is {1, do1, b1 }.
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A solution based on Merkle trees

With that in mind, we can now provide an efficient Merkle tree-based solution to secure update
propagation. Unlike [LKMW19], we see updates as black-box objects and do not consider how
they impact a database. This makes our solution more generic, but also more scalable than what
we presume [LKMW19] had in mind. We order the updates (up;); in a chronological order. A dy-
namic Merkle tree is constructed from the updates. By convention, if an existing node has no sib-
ling then its parent will have the same value; this allows to handle the overwhelming number of
cases when the number of updates is not a power-of-two.

Each update up; is published along with Sign(sk, H;), where H; is the Merkle hash of all the updates
up to up;; by the process we just described, a subscriber can itself recompute H; upon reception
of up;, and only requires time and storage O(logj) in order to do so. Hence this solution is very
competitive in terms of efficiency. However, we note that this efficiency requires a strict ordering
of the updates and remembering the last homomorphic hash, so this solution is neither stateless
nor flexible.

« Scalable?

This solution offers good scalability. When a subscriber fetches m missing updates out of a
total of t updates, he only needs to download and verify one single signature. Verification
requires to compute O(m + logt) hashes.

X Flexible?

For the same reason as the previous solution, this solution is not flexible.

% Stateless?

Each subscriber needs to keep a state of nodes which help him recompute the root of the
Merkle tree. This state consists of O(logt) nodes.
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3.4 Homomorphic Hashing

A final solution has recently been proposed by Lewi, Kim, Maykov and Weis [LKMW19]. Unlike
the previous ones, this solution does not rely on generic hash functions but instead on hash func-
tions with the peculiar property of being set-homomorphic. Indeed, they require the existence of a
hash function H on sets such that for any disjoint sets S, T:

H(SUT) = H(S) + H(T).

This property is known as set-homomorphism. The notion of set-homomorphic hash functions, as
well as concrete instantiations, have first been proposed by Bellare and Micciancio [BM97]. In par-
ticular, [BM97] proposed LtHash, a set-homomorphic hash function based on the SIS assumption,

which is a standard hardness assumption in lattice-based cryptography. LtHash has been used

by [LKMW19] as the underlying set homomorphic hash function.

In the solution of [LKMW19], each update up; is published along with sig; = Sign(sk, H;), where
H; is the homomorphic hash of the set of all updates up to upj.4 The efficiency gain of this solu-
tion lies in the fact that if a subscriber has missed m updates up;, 4, ..., up;,.,, he only needs to be
sent sig;,, = Sign(sk, Hi;+m), as he can use H; (which he stored) as well as up; 4, . .., up;,, (Which
he needs anyway) to recompute himself H;,, by leveraging the set-homomorphic properties of

H and subsequently check the validity of sig;, ,,. Thus this solution achieves excellent scalability.
However, we note that it is not flexible as the updates should follow a strict ordering.

v Scalable?
This solution offers excellent scalability: a subscriber fetching m missing updates needs to
download and verify one signature.

X Flexible?
For the same reason as the previous solutions, this solution is not flexible.

X Stateless?
Each subscriber needs to keep a state consisting of one single hash (the one corresponding
to its current update state).

The original construction of [LKMW19] is more complex as it takes into account the nature of the updates (adding,
“* removing or modifying an element in the database). We present here a simplified variant of their scheme which is
agnostic to the nature of updates, making it more generic yet as efficient.
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4 A Novel Desigh Approach:
SUP via Set-Homomorphic Sighatures

Looking back at the solutions for SUP described in Section 3, they all rely on the same high-level
idea (hash-then-sign the update or database), and only differ in their execution of how the hash
operation is realized. The first solution hashes each update naively, the second one hashes the
database naively, the third one hashes the database with a Merkle tree and the last one hashes
each update using homomorphic hashing. A common point is that they all rely on a classical signa-
ture scheme with no specific properties.

Our solution stands apart as it requires a set-homomaorphic signature scheme, which is the signa-
ture counterpart to a set-homomorphic hash function. This novel approach effectively solves the
problem described in the introduction: we obtain scalable, flexible and stateless SUP. This section
first presents set-homomorphic signatures, and then shows how to use them for SUP.

4.1 Set-Homomorphic Signatures

A set-homomorphic signature scheme is a signature scheme such as if sigs < Sign(sk, S) and
sigr < Sign(sk, S) are valid signatures of disjoint sets S and T, then with high probability:

sigs 1 = sigg + sigy is a valid signature of SU T.

This notion is related but distinct from incremental signatures [BGG94, BGG95], which allow to
quickly compute the signature of an updated document. Incremental signatures schemes can be
constructed in a generic way from a signature scheme [BGG95], and in existing constructions the
updated signature is computed by the signer itself. In contrast, is is not currently known how to
construct set-homomorphic signatures in a generic and efficient way, but on the other hand com-
puting an updated set-homomorphic signature can be done by anyone (not only the signer) as it
does not require any secret information.

Examples of set-homomorphic signatures

In 2008, Gentry, Peikert and Vaikuntanathan [GPV08] showed how to obtain secure hash-then-
sign schemes using lattices problems. In their framework (which we will call the GPV framework),
the public key is a random-looking matrix A with coefficients in Z,, and the signature of a message
msg is a short vector sig (in the sense that its norm is small) such that sig - A = H(msg).” Several
variations and refinements to this framework have been proposed [MP12,5513,GM18], and a few
practical instantiations have been proposed [DLP14, MSO17,BFRLS18, PFH"19]. If the underly-
ing hash function H is homomorphic, then GPV-based signature schemes are set-homomorphic.

s Many concrete instantiations of the GPV framework randomize the hash with a salt which is sent along with the
signature, but our argument is indifferent to the presence of a salt.
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Indeed, if sigq, .. ., sigy,, are valid signatures for msgy, ..., msg, then:

(sigy + - +sigy) - A= H(msgy) + --- + H(msg,,)
= H({msgy,..., msg,})

So from m valid signatures for distinct messages msgy, . .., msg,,, we can construct

one single signature that is valid for the set {msg,, ..., msg,,}. Animportant caveat is that for the
signature (sigq + - - - + sig,,) to be valid, it should remain small. On the other hand summing m sig-
natures will increase the norm of the result by /m on average, so it is clear that one can only allow
a finite number of summations while maintaining security. Therefore any application (including
ours) exploiting the set homomorphism of GPV-style signatures needs to strike a balance between
security and the number of summations allowed.

4.2 Our Novel Solution

Our solution requires a set-homomorphic signature scheme (KeyGen, Sign, Verify). As for the scheme
of Section 3, the distributor D initially generates a keypair (pk, sk) and distributes the public key

pk to the subscribers. As in the solution of Section 3.1, each update up is published along with its
signature sigy,,; = Sign(sk, {up}). When a subscriber receives a single update up, he verifies its
validity by checking that Verify(pk, sig,p), {up}) = True. Thus for individual updates this solution
works just like the one of Section 3.1.

The set-homormorphism property kicks in when considering batch updates. If a child subscriber
has missed m updates up;, 4, ..., up;,, and fetches them from a parent subscriber, the signatures
sigupi+1 can be aggregated into one single signature. By the set-homomorphic properties of the
signature scheme:

Sign(sk, {Upi+1}> T Sig”(Ska {upi+k}> = Sign(sk, {upi+17 ceey Upi+m})

Thus the parent subscriber which possesses Sign(sk, {up;;1}), ..., Sign(sk, {upj.m}) can sum them
into a single signature Sign(sk, {up;; 1, -.,up;;m}) and send it to the child subscriber, saving a fac-
tor m in bandwidth and verification time.

v Scalable?
This solution offers excellent scalability: a subscriber fetching m missing updates needs to
download and verify one signature.

v Flexible?
As each update is independent, this solution achieves very good flexibility: the protocol re-
mains fully functional and secure in the presence of out-of-order or missing updates. It can
also accommodate fine-grained policies such as forwarding distinct batch of updates to dif-
ferent sets of subscribers.

v Stateless?
Neither the distributor nor subscribers need to maintain a state.
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5 Practical Instantiation with Falcon

We focus our attention on a family of signatures which are set-homomorphic (when the underly-

ing hash function is also set-homomorphic): signatures based on the GPV framework [GPVO08]. In-
stantiations of the GPV framework [GPV08] can essentially be separated in two lines of research.

The first one follows the Micciancio-Peikert [MP12] variant of GPV, and was instantiated in [BFRLS18,
GM18, GPRT18, CGM19]. The second one instantiates GPV over NTRU lattices [SS13, DLP14,
MSO17,PFH"19]. The signature scheme Falcon [PFH"19] is based on the second line of research
and, as a finalist to NIST’s standardization process [NIS19], has arguably achieved a certain level of
maturity and received extensive scrutiny. In addition, it is one of the most compact post-quantum
signatures schemes and we therefore choose it as a starting point to instantiate our SUP solution.

Description of Falcon

We present Falcon at a high level, a more complete description can be found in [PFH"19]. We
work over the rings R = Z[x]/(x" + 1) and Rq = R/qR. Thus elements of R polynomials with
integer coefficients of degree at most n — 1, and elements of R have the additional constraint that
their coefficients are in {0, 1,...,9 — 1}. Key generation of Falcon is described in Algorithm 1.

Algorithm 1 KeyGen(n, q)

Require: Ring dimension n, integer modulus g

Ensure: A public key pk = h € R, a private key sk = B € R?*2
1: Generate short polynomials f, g, F,G in R such that fG — gF =g
22h=g-f1modqc R,

4: return (pk = h,sk = B)

Algorithm 2 Sign(msg, sk) Algorithm 3 Verify(msg, sig, pk)
Require: A message msg and a private Require: A message msg, a public key pk
key sk and a signature sig
Ensure: A signature sig of msg Ensure: True or False
1: Use sk to compute (sq,52) € R such 1: s; = H(msg) — s1h
that: 2: if ||(51,52)]l2 < Band ||(51,52)]|c0 <
» 51+ Sph = H(msg) B then
> ||(51,52)]]2 <B 3 return True
> [(s1,52)[lo0 < Boo 4: else
2: return sig = s, 5: return False
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Table 1: Falcon parameters for SUP

Description Notation Value
Ring dimension n 1024
Integer modulus q 6873089
Standard deviation o 1.54,/9
Number of supported aggregations k 1000
Constraint on ||(s1,52)||2 B [rsig : a\/ﬂw
Tailcut rate for the signature Tsig 1.2
Constraint on || (51, 52)]] e B {o, /2k - log (%)
Signature size in bytes |sk| 2816
Quantum security level A 100

Tweaking Falcon for SUP

Accounting for the aggregation of signatures require to tweak the parameters of Falcon. We use
the parameters provided in table 1.

Aggregating k signatures still gives 2816 bytes. We briefly explain the rationale for our parame-
ters:

» B is chosen so that the aggregation of k signatures will be shorter than 8 with overwhelming
probability. This is described later in the paragraph Security Analysis.

» The security level slowly degrades as k increases. We fix an upper bound of 1000 on k, as it
allows for a large number of aggregations while providing a reasonable bit-security of 100.
This is discussed in the paragraph Security Analysis and illustrated by Figure 4.

» We require q > B to definitely rule out a situation where security is unclear. This is described
in the paragraph The danger zone 8 > q.

» We impose an additional bound ., on the infinity norm as an additional safety measure.
This is described later in the paragraph The bound .

The rest of this section details the choice of parameters, their interplay and how we obtain the
claimed security level.

Security Analysis

The state of the art of the cryptanalysis on Falcon is given in [PFHT 19, Section 2.5.2]. This include
key recovery via lattice reduction, forgery via lattice reduction, hybrid attacks, “overstretched
NTRU” attacks and algebraic attacks. Among these attacks, we found that the best cryptanalysis
against Falcon is also the best one against our modified scheme: forgery via lattice reduction.

Each non-aggregated signature (s1,s,) follows a 2n-dimensional Gaussian of standard deviation
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Figure 4: Security level as a function of the number of aggregated signatures

0. Summing k of them yields a 2n-dimensional Gaussian of standard deviation ovk. According to
[Lyu12, Lemma 4.4, Item 3], the norm of this sum is less than 8 = Tsig - 0V 2nk with probability
<271 for 1y = 1.2.

In lattice-based signatures, the larger a signature is the easier it is to forge it. Therefore the se-
curity level will degrade with the number of aggregated signatures. We re-evaluate the security
using Martin Albrecht’s LWE estimator (https://bitbucket.org/malb/lwe-estimator). We found
out that the security level enjoys a graceful degradation with the number of aggregations; it quickly
dwindles when k is small, but for larger values of k the decrease is very small. Figure 4 illustrates
the security level as a function of the number of aggregated signatures.
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