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Maintaining a consistent database across all nodes of distributed network is a
vital but challenging task, especially in an asynchronous seࣕng. In this docu-
ment, we propose to use homomorphic signatures to perform this task securely.
Unlike previous soluࣅons, ours achieves high scalability, flexibility and state-
lessness. We also highlight several potenࣅal applicaࣅons.

1 Introduction
The real-life moধvaধon for this work is update propagaধon in distributed networks. An important
constraint imposed on these networks is asynchrony: from their very nature, distributed networks
cannot instantaneously propagate an update. They should nevertheless maintain funcধonality and
security in the face of asynchrony.

We study the progagaধon of updates in distributed networks from a security viewpoint. For sim-
plicity, we consider that one single node may send updates to the network; this node is called the
distributor (denoted D) and the other nodes are called subscribers. Our arguments seamlessly
transfer to the case of several distributors.

Distributor and subscribers share a common, regularly updated database. The distributor plays a
special role as he edicts the update policy: this includes deciding what the updates are and when
to apply them, but can also entail finer-grained policies, such as: (a) specifying disধnct updates for
different groups of users, (b) specifying dependencies (or lack thereof) between disধnct updates.

What is the best way to propagate an update? A naive soluধon with limited scalability is for the
distributor to contact directly all the subscribers in a centralized way, as illustrated by the star net-
work of Figure 1. A more scalable soluধon is for the distributor to send the updates to a subset
of subscribers, which will themselves transfer them to other subscribers, and so on unধl the up-
dates are distributed to every user in the network. The server then assumes the role of the root of
a tree, with the subscribers being the other nodes. This is illustrated in Figure 2.
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Figure 1: Centralized update propagaধon
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Figure 2: Distributed update propagaধon
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1.1 Secure Update Propagation in Distributed Networks

Distributed updates beħer befit the nature of distributed systems and are scalable. However, they
raise the issue of the authenࣅcity of updates: how can a subscriber (say C2 in Figure 2) be sure that
an update was created by the distributor D and not by another subscriber (say P1 in Figure 2)?
This is informally the problem of secure update propagaࣅon (or SUP).

An obvious soluধon to this quesধon is to rely on digital signatures. Just like their real world coun-
terparts, digital signatures can be verified by anyone knowing (the public key pk of) the signer, but
can be computed only by the signer (using a private key sk known only by her). In this document,
we present four soluধons to SUP, all based on signature schemes. We evaluate them with respect
to three metrics: scalability, flexibility and statelessness.

Scalability
The first criterion for evaluaধng SUP soluধons is their scalability. In an unprotected distributed
update protocol, subscribers fetch updates from the distributor or other subscribers. Each of the
secure soluধons we review imposes an overhead: to authenধcate the updates they receive, sub-
scribers must receive and verify signatures (which are appended to the updates). Each soluধon
varies by the number of signatures subscribers may receive. Depending on the soluধon, this num-
ber may depend on:

▶ The total number of updates (denoted k).

▶ The number of updates missed by a user (denoted m).

Flexibility
The second criterion is flexibility. As stated before, distributed networks are inherently asynchronous;
this provokes several situaধons which have to be handled:

▶ Out-of-order updates: Updates may not be received in the intended order. For example, a
subscriber may receive upi+1 before the update upi.

▶ Missing updates: Updates may be lost in transit and never be received. This can be seen as an
extreme case of an out-of-order update, where an update is received infinitely late.

Other situaধons stem from specific needs of the network’s users. For example:

▶ Fine-grained update policy: The distributor may decide that a subset of users must receive
some updates, and that another subset must receive other updates. The subsets of users
may even intersect. This scenario is parধcularly relevant for the example of sođware updates
in Linux and applicaধons updates in iOS/Android: depending on the applicaধons installed,
users may require different updates.

We consider that a soluধon is flexible if is amenable to the various situaধons we described. Ide-
ally, it should remain fully funcধonal and retain the same level of scalability. On the other side of
the spectrum, a soluধon may completely break down in one of these situaধons.
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Statelessness
A system is said to be stateful if it requires (for funcধonality or security) its parধes to remember
previous events or interacধons. In the contrary case, it is said to be stateless. In general, it is desir-
able for a system to be stateless rather than stateful, as the laħer may complicate deployment and
implementaধon. For all the soluধons we consider, we state whether they are stateless and, if not,
which parধes are required to be stateful (distributor, subscribers, or both).

1.2 The Problemof Scalable, Flexible and Stateless SUP

Scalability, flexibility and statelessness are all desirable properধes. A scalable system costs less re-
sources and enables growth instead of impeding it. Likewise, flexibility increases the applicability
of a soluধon by making it amenable to more use cases. Finally, stateful schenes are ođen undesir-
able.1 We therefore consider the following problem:

Can we build a scalable, flexible and stateless SUP protocol?

As it turns out, it is surprisingly challenging to achieve the three properধes at the same ধme, and
doing so has remained an open problem unধl now. The naive soluধon (signing each update) is flex-
ible and stateless but not scalable, as we will see in Secধon 3. [LKMW19] presented a few scalable
soluধons, but each of them suffered from statefulness and a lack of flexibility. In this document,
we introduce a new soluধon which is novel is two ways:

1. It is the first soluধon which achieves simultaneously scalability, flexibility and statelessness.
Previous soluধons were either flexible and stateless, or scalable, but never realized the three
properধes at once.

2. It is the first soluধon which relies on (set-)homomorphic signatures. Our soluধon, like the pre-
vious ones, relies on hash funcধons and digital signatures. Some of the previous soluধons used
hash funcধons with special properধes, but all of them used classical signatures. On the other
hand, our soluধon relies on set-homomorphic signatures, this property is precisely what allows
our soluধon to simultaneously be scalable, flexible and stateless.

The next table summarizes the differences between our soluধon (in boldface) and the previous
ones, both in terms of the techniques used and the results achieved.

Soluধon Hash funcধon Signature Scalable? Flexible? Stateless? Secধon

Sign update Classical Classical    Sec. 3.1

Sign database Classical Classical    Sec. 3.2

Merkle tree Merkle tree Classical    Sec. 3.3

Homomorphic hashing Homomorphic Classical    Sec. 3.4

Homomorphic signatures Homomorphic Homomorphic    Sec. 4

1 Adam Langley, cryptographer at Google: “for most environments it’s a huge foot-cannon”,
(https://www.imperialviolet.org/2013/07/18/hashsig.html).
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1.3 Use Cases

We present a few use cases for which our novel soluধon may be of interest.

Database updates in Facebook
In a white paper published by Facebook [LKMW19] and companion arধcles2 , it is explained that
Facebook’s infrastructure relies on distributed update propagaধon. This raises scalability issues
which Facebook resolves with a soluধon based on homomorphic hashing (detailed in Secধon 3.4),
currently deployed on their servers. Our soluধon offers scalability, but also provides flexibility.

Applications updates in iOS/Android
The standard way to install applicaধons in the iOS and Android operaধng systems is by using a
centralized service: the App Store for iOS, and Google Play for Android. Here the distributor is
the App Store/Google Play, the subscribers are mobiles devices equipped with iOS/Android and
updates are regularly published for each applicaধon.

This example highlights why a fine-grained update policy can be desirable. Indeed, each subscriber
only need updates of applicaধons she possesses, which means that each subscriber may receive a
disধnct subset of updates. Likewise, applicaধons may be interdependent (for example, a bank may
propose two disধnct yet interconnected applicaধons to its clients) or completely independent (for
example, Wikipedia and a newspaper applicaধon), which may call for a fine-grained update policy.

Software updates in Linux
Linux distribuধons allow to install and update sođware. Similarly to iOS and Android, this can be
done in a centralized manner via a sođware manager. Here the distributor is the repository from
which sođware updates are fetched. Is is common for a device which has been offline for a few
days to require dozens of sođware updates: compared to non-scalable soluধons, our soluধon may
reduce the bandwidth and computaধon overhead by an order of magnitude or more. In addiধon,
different users may install disধnct sođware, which requires a level of flexibility which does not
seem to be met by any scalable soluধon described in this document, except for ours. Finally, each
sođware may have its own update policy. In Linux, this is made explicit through the noধon of de-
pendencies: a sođware may specify a list of sođwares that need to be installed prior to it, and the
same goes for updates. Our soluধon is compaধble with such update policies.

1.4 Roadmap

The rest of this document is organized as follows. Secধon 2 presents the cryptographic tools used
and formalizes SUP. Secধon 3 presents the previously exisধng soluধons: one of them is stateless
and flexible but not scalable, the other ones possess various levels of scalability but are neither
flexible nor stateless. Secধon 4 makes a detailed presentaধon of our novel design, which achieves
simultaneously scalability, flexibility and statelessness. Finally, Secধon 5 provides a concrete in-
stanধaধon of our design.

2 https://engineering.fb.com/security/homomorphic-hashing/

https://engineering.fb.com/data-infrastructure/location-aware-distribution-configuring-servers-at-scale/
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2 Preliminaries
2.1 Hash Functions

In cryptography, a hash funcধon that maps bit strings of arbitrary size to a bit string (called a hash
or hash digest) of fixed size; it requires the important property to be a one-way funcধon, which
means that it should be infeasible to invert in pracধce. Cryptographic hash funcধons may be seen
as the electronic equivalent of fingerprints, as they provide a concise way to guarantee the in-
tegrity of a document: even the slightest change to a bit string will completely change its hash.

Set-Homomorphism

Two of the soluধons we present rely on classical hash funcধons with no parধcular property. The
soluধon of Secধon 3.3 relies on Merkle trees, which provide a convenient manner of hashing a
set; upon addiধon/removal/modificaধon of an element, the hash digest can be updated in ধme
logarithmic in the size of the set. The soluধon of Secধons 3.4 and 4 uses set-homomorphic hash
funcধons, which for the same operaধons allow to update the hash digest in constant ধme. A hash
funcধon H is said to be set-homomorphic if for any disjoint sets S, T:

H(S ∪ T) = H(S) + H(T).

Addiধonal informaধon about Merkle trees and set-homomorphic hash funcধons are given in Sec-
ধon 3.3 and 3.4, respecধvely.

2.2 Signature Schemes

A signature scheme provides the digital equivalent of physical signatures. First, a party (called
the signer) conjointly generates a public key pk and a private key sk, distribuধng the former and
keeping the laħer for himself. The private key allows the signer to compute a signature sig =

Sign(sk,msg) for any message msg during what is called the signing procedure. The public key
pk allows any recipient of a message msg sent by the signer to verify its authenধcity by checking
whether Verify(pk,msg, sig) accepts sig as a valid signature of msg; however, pk does not help to
compute a signature. This replicates a feature of real-life signatures, which can be easily verified
by anyone but (ideally) only done by the legiধmate signer.

Set-Homomorphism

In this document, all the soluধons except one rely on classical signatures and do not require any
parধcular property. The last soluধon requires set-homomorphic signatures, which is the signature
analogue of set-homomorphic hash funcধons. A signature scheme is said to be set-homomorphic
if for any disjoint sets S, T and valid signatures sigS ← Sign(sk, S) and sigT ← Sign(sk, T), their sum
sigS + sigT is with high probability a valid signature of S ∪ T, that is:

sigS + sigT ∈ Sign(sk, S ∪ T).
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3 Overview of Previous Solutions
All soluধons below rely on signatures and hash funcধons. Soluধons in Secধons 3.1, 3.2 and 3.3
assume the existence of a generic hash funcধon (say, SHA-3) but differ in how they are applied to
updates/databases. The soluধon in Secধon 3.4 relies on hash funcধons with specific properধes.

3.1 Signing Each Update

The naive soluধon for SUP is for the distributor D to sign each update with a given signature scheme:
sigi ← Sign(sk, upi). Each ধme D publishes an update, it sends (upi, sigi) to its children, who propa-
gate it as is. Each update is completely independent. This is the simplest soluধon, and is also quite
flexible: missing and out-of-order updates are easily handled. However, the number of signatures
and verificaধons is equal to the number of missed updates, so this soluধon has poor scalability.

 Scalable?
As each update is independent, this scales linearly in the number of (missed) updates: if a
subscriber has missed m updates, he downloads m signatures and performs m verificaধons.

 Flexible?
Since each update is independent, this soluধon is very flexible: missing or out-of-order up-
dates do no affect its funcধonality, and it can accommodate fine-grained update policies.

 Stateless?
As each update is self-contained, there is no need to maintain a state.

3.2 Signing theWhole Database

A downside of the method from Secধon 3.1 is that it does not scale well with the number of missed
updates. To miধgate this efficiency loss, a soluধon suggested in [LKMW19] for the distributor D
to sign the whole database: sigi ← Sign(sk,Di), where Di is the state of the database ađer up-
dates up1, . . . , upi have been applied. It is explained in [LKMW19] that the computaধonal cost of
this soluধon is linear in the total number of updates. A quick workaround is to instead set sigi ←
Sign(sk, hhhi), where hhh1 = H(up1) and for any i > 1, hhhi is recursively defined as hhhi = H(upi∥hhhi−1).

 Scalable?
This soluধon offers excellent scalability in the number of missed updates: a subscriber who
missed m updates only needs to download and verify 1 signature (along with the m updates).

 Flexible?
As each update depends on all the previous ones, this soluধon offers no flexibility.

 Stateless?
The distributor needs to keep track of all the updates he has published. This can be done ef-
ficiently (the state can consist of a single hash digest), but sধll the system requires the distrib-
utor to be stateful. Likewise, each subscriber needs to be stateful as well.
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3.3 Merkle Trees

It has been suggested in [LKMW19] to tweak the soluধon of Secধon 3.2 by relying on trees. We
show here that by carefully employing it, it enjoys a good level of scalability.

Merkle trees and their properties.
A Merkle tree (or hash tree) is a binary tree in which the value of each internal node is the hash of
the values of its children. An illustraধon can be found in Figure 3.

As ođen when tree structures are used, Merkle trees provide dramaধc gains over naive hashing
for ensuring the integrity of a database. To hash a whole database, one makes each element of
the database a leaf of the Merkle tree ( nodes in Figure 3) and takes as the hash of the database
the root of the Merkle tree ( in Figure 3). Simple alteraধons of the database (adding, deleধng or
modifying) can be taken into account in the hash digest in ধme O(log t), where t denotes the total
number of elements in the database. In comparison, a naive hash would need ধme O(t).
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Figure 3: A Merkle tree. Edges connecধng nodes mean “the parent is the hash of the two chil-
dren”. The value of a00 is H(0∥1), the value of b0 is H(a00∥a01) = H(H(0∥1)∥H(2∥3)), and so on.

It has been noted in [LKMW19] that in order to reach that level of efficiency, the whole Merkle
tree needs to be stored, which means storing O(t) values. Consequently, [LKMW19] has dismissed
Merkle trees as being ulধmately impracধcal for secure update propagaধon. However, we note that
this O(t) storage requirement is true only if we need to perform addiধons AND deleধons AND
modificaধons. If we only require addiࣅons, then one only needs to store what is called the copath
(or authenধcaধon path) of the last leaf added to the Merkle tree.3 This allows to can relax the
storage requirement to O(log t).

3 We say that the path of a node is the set of its ancestors (including itself), and its co-path is the set of siblings of
each element in the path. For example, the path of the leaf 1 is {0, a00, b0}, and its copath is {1, a01, b1}.
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A solution based onMerkle trees
With that in mind, we can now provide an efficient Merkle tree-based soluধon to secure update
propagaধon. Unlike [LKMW19], we see updates as black-box objects and do not consider how
they impact a database. This makes our soluধon more generic, but also more scalable than what
we presume [LKMW19] had in mind. We order the updates (upi)i in a chronological order. A dy-
namic Merkle tree is constructed from the updates. By convenধon, if an exisধng node has no sib-
ling then its parent will have the same value; this allows to handle the overwhelming number of
cases when the number of updates is not a power-of-two.

Each update upj is published along with Sign(sk,Hj), where Hj is the Merkle hash of all the updates
up to upj; by the process we just described, a subscriber can itself recompute Hj upon recepধon
of upj, and only requires ধme and storage O(log j) in order to do so. Hence this soluধon is very
compeধধve in terms of efficiency. However, we note that this efficiency requires a strict ordering
of the updates and remembering the last homomorphic hash, so this soluধon is neither stateless
nor flexible.

 Scalable?
This soluধon offers good scalability. When a subscriber fetches m missing updates out of a
total of t updates, he only needs to download and verify one single signature. Verificaধon
requires to compute O(m+ log t) hashes.

 Flexible?
For the same reason as the previous soluধon, this soluধon is not flexible.

 Stateless?
Each subscriber needs to keep a state of nodes which help him recompute the root of the
Merkle tree. This state consists of O(log t) nodes.
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3.4 Homomorphic Hashing

A final soluধon has recently been proposed by Lewi, Kim, Maykov and Weis [LKMW19]. Unlike
the previous ones, this soluধon does not rely on generic hash funcধons but instead on hash func-
ধons with the peculiar property of being set-homomorphic. Indeed, they require the existence of a
hash funcধon H on sets such that for any disjoint sets S, T:

H(S ∪ T) = H(S) + H(T).

This property is known as set-homomorphism. The noধon of set-homomorphic hash funcধons, as
well as concrete instanধaধons, have first been proposed by Bellare and Micciancio [BM97]. In par-
ধcular, [BM97] proposed LtHash, a set-homomorphic hash funcধon based on the SIS assumpধon,
which is a standard hardness assumpধon in laষce-based cryptography. LtHash has been used
by [LKMW19] as the underlying set homomorphic hash funcধon.

In the soluধon of [LKMW19], each update upj is published along with sigi = Sign(sk,Hj), where
Hj is the homomorphic hash of the set of all updates up to upj.4 The efficiency gain of this solu-
ধon lies in the fact that if a subscriber has missed m updates upi+1, . . . , upi+m, he only needs to be
sent sigi+m = Sign(sk,Hi+m), as he can use Hi (which he stored) as well as upi+1, . . . , upi+m (which
he needs anyway) to recompute himself Hi+m by leveraging the set-homomorphic properধes of
H and subsequently check the validity of sigi+m. Thus this soluধon achieves excellent scalability.
However, we note that it is not flexible as the updates should follow a strict ordering.

 Scalable?
This soluধon offers excellent scalability: a subscriber fetching m missing updates needs to
download and verify one signature.

 Flexible?
For the same reason as the previous soluধons, this soluধon is not flexible.

 Stateless?
Each subscriber needs to keep a state consisধng of one single hash (the one corresponding
to its current update state).

4
The original construcধon of [LKMW19] is more complex as it takes into account the nature of the updates (adding,
removing or modifying an element in the database). We present here a simplified variant of their scheme which is
agnosধc to the nature of updates, making it more generic yet as efficient.
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4 ANovel Design Approach:
SUP via Set-Homomorphic Signatures
Looking back at the soluধons for SUP described in Secধon 3, they all rely on the same high-level
idea (hash-then-sign the update or database), and only differ in their execuধon of how the hash
operaধon is realized. The first soluধon hashes each update naively, the second one hashes the
database naively, the third one hashes the database with a Merkle tree and the last one hashes
each update using homomorphic hashing. A common point is that they all rely on a classical signa-
ture scheme with no specific properধes.

Our soluধon stands apart as it requires a set-homomorphic signature scheme, which is the signa-
ture counterpart to a set-homomorphic hash funcধon. This novel approach effecধvely solves the
problem described in the introducধon: we obtain scalable, flexible and stateless SUP. This secধon
first presents set-homomorphic signatures, and then shows how to use them for SUP.

4.1 Set-Homomorphic Signatures

A set-homomorphic signature scheme is a signature scheme such as if sigS ← Sign(sk, S) and
sigT ← Sign(sk, S) are valid signatures of disjoint sets S and T, then with high probability:

sigS∪T = sigS + sigT is a valid signature of S ∪ T.

This noধon is related but disধnct from incremental signatures [BGG94, BGG95], which allow to
quickly compute the signature of an updated document. Incremental signatures schemes can be
constructed in a generic way from a signature scheme [BGG95], and in exisধng construcধons the
updated signature is computed by the signer itself. In contrast, is is not currently known how to
construct set-homomorphic signatures in a generic and efficient way, but on the other hand com-
puধng an updated set-homomorphic signature can be done by anyone (not only the signer) as it
does not require any secret informaধon.

Examples of set-homomorphic signatures

In 2008, Gentry, Peikert and Vaikuntanathan [GPV08] showed how to obtain secure hash-then-
sign schemes using laষces problems. In their framework (which we will call the GPV framework),
the public key is a random-looking matrix AAA with coefficients in Zq, and the signature of a message
msg is a short vector sig (in the sense that its norm is small) such that sig · AAA = H(msg).5 Several
variaধons and refinements to this framework have been proposed [MP12,SS13,GM18], and a few
pracধcal instanধaধons have been proposed [DLP14,MSO17, BFRLS18, PFH+19]. If the underly-
ing hash funcধon H is homomorphic, then GPV-based signature schemes are set-homomorphic.

5 Many concrete instanধaধons of the GPV framework randomize the hash with a salt which is sent along with the
signature, but our argument is indifferent to the presence of a salt.
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Indeed, if sig1, . . . , sigm are valid signatures for msg1, . . . ,msgk, then:

(sig1 + · · ·+ sigm) · AAA = H(msg1) + · · ·+ H(msgm)

= H({msg1, . . . ,msgm})

So from m valid signatures for disধnct messages msg1, . . . ,msgm, we can construct
one single signature that is valid for the set {msg1, . . . ,msgm}. An important caveat is that for the
signature (sig1 + · · · + sigm) to be valid, it should remain small. On the other hand summing m sig-
natures will increase the norm of the result by

√
m on average, so it is clear that one can only allow

a finite number of summaধons while maintaining security. Therefore any applicaধon (including
ours) exploiধng the set homomorphism of GPV-style signatures needs to strike a balance between
security and the number of summaধons allowed.

4.2 Our Novel Solution

Our soluধon requires a set-homomorphic signature scheme (KeyGen,Sign,Verify). As for the scheme
of Secধon 3, the distributor D iniধally generates a keypair (pk, sk) and distributes the public key
pk to the subscribers. As in the soluধon of Secধon 3.1, each update up is published along with its
signature sig{up} = Sign(sk, {up}). When a subscriber receives a single update up, he verifies its
validity by checking that Verify(pk, sig{up}, {up}) = TTTrrruuueee. Thus for individual updates this soluধon
works just like the one of Secধon 3.1.

The set-homormorphism property kicks in when considering batch updates. If a child subscriber
has missed m updates upi+1, . . . , upi+m and fetches them from a parent subscriber, the signatures
sigupi+1

can be aggregated into one single signature. By the set-homomorphic properধes of the
signature scheme:

Sign(sk, {upi+1}) + · · ·+ Sign(sk, {upi+k}) = Sign(sk, {upi+1, . . . , upi+m})

Thus the parent subscriber which possesses Sign(sk, {upi+1}), . . . , Sign(sk, {upi+m}) can sum them
into a single signature Sign(sk, {upi+1, . . . , upi+m}) and send it to the child subscriber, saving a fac-
tor m in bandwidth and verificaধon ধme.

 Scalable?
This soluধon offers excellent scalability: a subscriber fetching m missing updates needs to
download and verify one signature.

 Flexible?
As each update is independent, this soluধon achieves very good flexibility: the protocol re-
mains fully funcধonal and secure in the presence of out-of-order or missing updates. It can
also accommodate fine-grained policies such as forwarding disধnct batch of updates to dif-
ferent sets of subscribers.

 Stateless?
Neither the distributor nor subscribers need to maintain a state.
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5 Practical Instantiationwith Falcon
We focus our aħenধon on a family of signatures which are set-homomorphic (when the underly-
ing hash funcধon is also set-homomorphic): signatures based on the GPV framework [GPV08]. In-
stanধaধons of the GPV framework [GPV08] can essenধally be separated in two lines of research.
The first one follows the Micciancio-Peikert [MP12] variant of GPV, and was instanধated in [BFRLS18,
GM18, GPR+18, CGM19]. The second one instanধates GPV over NTRU laষces [SS13, DLP14,
MSO17,PFH+19]. The signature scheme Falcon [PFH+19] is based on the second line of research
and, as a finalist to NIST’s standardizaধon process [NIS19], has arguably achieved a certain level of
maturity and received extensive scruধny. In addiধon, it is one of the most compact post-quantum
signatures schemes and we therefore choose it as a starধng point to instanধate our SUP soluধon.

Description of Falcon
We present Falcon at a high level, a more complete descripধon can be found in [PFH+19]. We
work over the rings R = Z[x]/(xn + 1) and Rq = R/qR. Thus elements ofR polynomials with
integer coefficients of degree at most n − 1, and elements ofR have the addiধonal constraint that
their coefficients are in {0,1, . . . , q− 1}. Key generaধon of Falcon is described in Algorithm 1.

Algorithm 1 KeyGen(n, q)
Require: Ring dimension n, integer modulus q
Ensure: A public key pk = h ∈ Rq, a private key sk = BBB ∈ R2×2

1: Generate short polynomials f, g, F,G in R such that fG− gF = q
2: h = g · f−1 mod q ∈ Rq

3: BBB =

 g −f

G −F


4: return (pk = h, sk = BBB)

Algorithm 2 Sign(msg, sk)

Require: A message msg and a private
key sk

Ensure: A signature sig of msg

1: Use sk to compute (s1, s2) ∈ R such
that:
▶ s1 + s2h = H(msg)

▶ ∥(s1, s2)∥2 ≤ β
▶ ∥(s1, s2)∥∞ ≤ β∞

2: return sig = s2

Algorithm 3 Verify(msg, sig, pk)

Require: A message msg, a public key pk
and a signature sig

Ensure: TTTrrruuueee or FFFaaalllssseee
1: s2 = H(msg)− s1h
2: if ∥(s1, s2)∥2 ≤ β and ∥(s1, s2)∥∞ ≤

β∞ then
3: return TTTrrruuueee
4: else
5: return FFFaaalllssseee

© PQShield Ltd | www.pqshield.com 13 of 16



Table 1: Falcon parameters for SUP

Descripধon Notaধon Value

Ring dimension n 1024

Integer modulus q 6873089

Standard deviaধon σ 1.54
√
q

Number of supported aggregaধons k 1000

Constraint on ∥(s1, s2)∥2 β
⌈
τsig · σ

√
2nk

⌉
Tailcut rate for the signature τsig 1.2

Constraint on ∥(s1, s2)∥∞ β∞
⌈
σ
√
2k · log

(
4n
p

)⌉
Signature size in bytes |sk| 2816

Quantum security level λ 100

Tweaking Falcon for SUP
Accounধng for the aggregaধon of signatures require to tweak the parameters of Falcon. We use
the parameters provided in table 1.

Aggregaধng k signatures sধll gives 2816 bytes. We briefly explain the raধonale for our parame-
ters:

▶ β is chosen so that the aggregaধon of k signatures will be shorter than β with overwhelming
probability. This is described later in the paragraph Security Analysis.

▶ The security level slowly degrades as k increases. We fix an upper bound of 1000 on k, as it
allows for a large number of aggregaধons while providing a reasonable bit-security of 100.
This is discussed in the paragraph Security Analysis and illustrated by Figure 4.

▶ We require q ≥ β to definitely rule out a situaধon where security is unclear. This is described
in the paragraph The danger zone β ≥ q.

▶ We impose an addiধonal bound β∞ on the infinity norm as an addiধonal safety measure.
This is described later in the paragraph The bound β∞.

The rest of this secধon details the choice of parameters, their interplay and how we obtain the
claimed security level.

Security Analysis
The state of the art of the cryptanalysis on Falcon is given in [PFH+19, Secধon 2.5.2]. This include
key recovery via laষce reducধon, forgery via laষce reducধon, hybrid aħacks, “overstretched
NTRU” aħacks and algebraic aħacks. Among these aħacks, we found that the best cryptanalysis
against Falcon is also the best one against our modified scheme: forgery via laࣕce reducࣅon.

Each non-aggregated signature (s1, s2) follows a 2n-dimensional Gaussian of standard deviaধon
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Figure 4: Security level as a funcধon of the number of aggregated signatures

σ. Summing k of them yields a 2n-dimensional Gaussian of standard deviaধon σ
√
k. According to

[Lyu12, Lemma 4.4, Item 3], the norm of this sum is less than β = τsig · σ
√
2nk with probability

≤ 2−111 for τsig = 1.2.

In laষce-based signatures, the larger a signature is the easier it is to forge it. Therefore the se-
curity level will degrade with the number of aggregated signatures. We re-evaluate the security
using Marধn Albrecht’s LWE esধmator (https://bitbucket.org/malb/lwe-estimator). We found
out that the security level enjoys a graceful degradaࣅon with the number of aggregaধons; it quickly
dwindles when k is small, but for larger values of k the decrease is very small. Figure 4 illustrates
the security level as a funcধon of the number of aggregated signatures.
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